面试的时候,经常会被面试官问到数据库优化方面的知识点。今天来总结一下数据库优化应该经过几个阶段,我觉得这样回答是一个比较优的答案。
0x01:SQL优化及应用程序优化
一个系统总是从小到大,所以在系统还是小型系统的时候。首先应该注重表的设计,合理使用主键、外键、索引;字段选用合适的数据类型、合适的数据长度。使用SQL考虑索引什么情况是有效的;什么时候是失效的,避免使用索引失效的SQL。
另外应该程序优化也很重要,比如能批量执行SQL,就不要在程序中循环执行SQL。使用各种框架的缓存也非常重要,例如,如果使用MyBatis时,就好合理使用MyBatis的一级缓存和二级缓存;使用Hibernate时,就好合理使用Hibernate的一级缓存和二级缓存等。
0x02:数据库读写分类
当业务量达到一定程度时,可以考虑数据库的读写分离方案,让读写业务分离。但是一定要考虑如何解决写库与读库的数据一致性问题。目前,很多开源的读写分离服务和框架。主要基于如下两种方案:
- 应用程序根据业务逻辑来判断,增删改等写操作命令发给写库,查询命令发给读库。
- 利用中间件来做代理,负责对数据库的请求识别出读还是写,并分发到不同的数据库中。
0x03:引入缓存数据库
NoSQL数据库目前也是大行其道,特别Redis数据库。例如使用Redis缓存服务器,可以把一些常用、不经常变化的数据缓存到内存。在内存读取数据的数据要比在硬盘读取的速度不知道快多少倍。引入缓存数据库增加了系统的复杂度,另外还有考虑关系型数据库与NoSQL数据库数据一致性的问题。
0x04:垂直拆分
一个数据库由很多表的构成,每个表对应着不同的业务,垂直切分是指按照业务将表进行分类,分布到不同的数据库上面,这样也就将数据或者说压力分担到不同的库上面,如下图:
优点:
- 拆分后业务清晰,拆分规则明确
- 系统之间整合或扩展容易
- 数据维护简单
缺点:
- 部分业务表无法join,只能通过接口方式解决,提高了系统复杂度
- 受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高
- 事务处理复杂
0x05:水平拆分
垂直拆分后遇到单机瓶颈,可以使用水平拆分。相对于垂直拆分的区别是:垂直拆分是把不同的表拆到不同的数据库中,而水平拆分是把同一个表拆到不同的数据库中。
相对于垂直拆分,水平拆分不是将表的数据做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中 的某些行切分到一个数据库,而另外的某些行又切分到其他的数据库中,主要有分表,分库两种模式。如下图:
分库模式
分表模式
优点:
- 不存在单库大数据,高并发的性能瓶颈
- 对应用透明,应用端改造较少
- 按照合理拆分规则拆分,join操作基本避免跨库
- 提高了系统的稳定性跟负载能力
缺点:
- 拆分规则难以抽象
- 分片事务一致性难以解决
- 数据多次扩展难度跟维护量极大
- 跨库join性能较差
原文链接:https://www.toutiao.com/a6796639746387870211/