脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python使用knn实现特征向量分类

python使用knn实现特征向量分类

2021-05-08 00:21RossieSeven Python

这篇文章主要为大家详细介绍了python使用knn实现特征向量分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

这是一个使用knn把特征向量进行分类的demo。

Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集是一些已经被手动打好标签的数据,knn会根据你打好的标签来挖掘同类对象的相似点,从而推算sample的标签。

Knn算法的准确度受k影响较大,可能需要写个循环试一下选出针对不同数据集的最优的k。

至于如何拿到特征向量,可以参考之前的博文。

代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#-*- coding: utf-8 -*-
__author__ = 'Rossie'
from numpy import *
import operator
 
'''构造数据'''
def createDataSet():
  characters=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
  labels=['A','A','B','B']
  return characters,labels
 
'''从文件中读取数据,将文本记录转换为矩阵,提取其中特征和类标'''
def file2matrix(filename):
  fr=open(filename)
  arrayOLines=fr.readlines()
  numberOfLines=len(arrayOLines)    #得到文件行数
  returnMat=zeros((numberOfLines,3))   #创建以零填充的numberOfLines*3的NumPy矩阵
  classLabelVector=[]
  index=0
  for line in arrayOLines:       #解析文件数据到列表
    line=line.strip()
    listFromLine=line.split('\t')
    returnMat[index, :]=listFromLine[0:3]
    classLabelVector.append(listFromLine[-1])
    index+=1
  return returnMat,classLabelVector   #返回特征矩阵和类标集合
 
'''归一化数字特征值到0-1范围'''
'''输入为特征值矩阵'''
def autoNorm(dataSet):
  minVals=dataSet.min(0)
  maxVals=dataSet.max(0)
  ranges=maxVals-minVals
  normDataSet=zeros(shape(dataSet))
  m=dataSet.shape[0]
  normDataSet=dataSet-tile(minVals,(m,1))
  normDataSet=normDataSet/tile(ranges,(m,1))
  return normDataSet,ranges, minVals
  
def classify(sample,dataSet,labels,k):
  dataSetSize=dataSet.shape[0]   #数据集行数即数据集记录数
  '''距离计算'''
  diffMat=tile(sample,(dataSetSize,1))-dataSet     #样本与原先所有样本的差值矩阵
  sqDiffMat=diffMat**2   #差值矩阵平方
  sqDistances=sqDiffMat.sum(axis=1)    #计算每一行上元素的和
  distances=sqDistances**0.5  #开方
  sortedDistIndicies=distances.argsort()   #按distances中元素进行升序排序后得到的对应下标的列表
  '''选择距离最小的k个点'''
  classCount={}
  for i in range(k):
    voteIlabel=labels[sortedDistIndicies[i]]
    classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
  '''从大到小排序'''
  sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
  return sortedClassCount[0][0]
 
'''针对约会网站数据的测试代码'''
def datingClassTest():
  hoRatio=0.20     #测试样例数据比例
  datingDataMat,datingLabels=file2matrix('datingTestSet1.txt')
  normMat, ranges, minVals=autoNorm(datingDataMat)
  m =normMat.shape[0]
  numTestVecs=int(m*hoRatio)
  errorCount=0.0
  k=4
  for i in range(numTestVecs):
    classifierResult=classify(normMat[i, : ],normMat[numTestVecs:m, : ],datingLabels[numTestVecs:m],k)
    print("The classifier came back with: %s, thereal answer is: %s" %(classifierResult, datingLabels[i]))
    if(classifierResult!= datingLabels [i] ) :
      errorCount += 1.0
  print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
 
def main():
  sample=[0,0]#简单样本测试
  sampleText = [39948,6.830795,1.213342]#文本中向量样本测试
  k=3
  group,labels=createDataSet()
  label1=classify(sample,group,labels,k)#简单样本的分类结果
  fileN = "datingTestSet.txt"
  matrix,label = file2matrix(fileN)
  label2 =classify(sampleText,matrix,label,k)#文本样本的分类结果
  print("ClassifiedLabel of the simple sample:"+label1)
  print("Classified Label of the textsample:"+label2)
 
 
 
if __name__=='__main__':
  main()
  #datingClassTest()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/RossieSeven/article/details/52629520

延伸 · 阅读

精彩推荐