如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# -*- coding: utf-8 -*- import os import numpy as np import pandas as pd import h5py import pylab import matplotlib.pyplot as plt trainpath = str ( 'C:/Users/49691/Desktop/数据集/train/' ) testpath = str ( 'C:/Users/49691/Desktop/数据集/test/' ) n_tr = len (os.listdir(trainpath)) print ( 'num of training files: ' , n_tr) train_labels = pd.read_csv( 'C:/Users/49691/Desktop/数据集/sample_submission.csv' ) train_labels.head() from skimage import io, transform x = np.empty(shape = (n_tr, 224 , 224 , 3 )) y = np.empty(n_tr) labels = train_labels.invasive.values name = train_labels.name.values permutation = np.random.permutation(name.shape[ 0 ]) print (permutation) print (labels[permutation]) save_data = pd.DataFrame({ 'name' :permutation, 'invasive' :labels[permutation]}) save_data.to_csv( 'C:/Users/49691/Desktop/数据集/b.csv' ) for k,v in enumerate (np.random.permutation(n_tr)): print (k,v) path = '{0}{1}.jpg' . format (trainpath, v) tr_im = io.imread(path) x[k] = transform.resize(tr_im, output_shape = ( 224 , 224 , 3 )) y[k] = float (labels[v - 1 ]) |
以上这篇python 随机打乱 图片和对应的标签方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_21997625/article/details/79103048