使用scipy.optimize模块的root和fsolve函数进行数值求解线性及非线性方程,下面直接贴上代码,代码很简单
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
from scipy.integrate import odeint import numpy as np import matplotlib.pyplot as plt from scipy.optimize import root,fsolve #plt.rc('text', usetex=true) #使用latex ## 使用scipy.optimize模块的root和fsolve函数进行数值求解方程 ## 1、求解f(x)=2*sin(x)-x+1 rangex1 = np.linspace( - 2 , 8 ) rangey1_1,rangey1_2 = 2 * np.sin(rangex1),rangex1 - 1 plt.figure( 1 ) plt.plot(rangex1,rangey1_1, 'r' ,rangex1,rangey1_2, 'b--' ) plt.title( '$2sin(x)$ and $x-1$' ) def f1(x): return np.sin(x) * 2 - x + 1 sol1_root = root(f1,[ 2 ]) sol1_fsolve = fsolve(f1,[ 2 ]) plt.scatter(sol1_fsolve, 2 * np.sin(sol1_fsolve),linewidths = 9 ) plt.show() ## 2、求解线性方程组{3x1+2x2=3;x1-2x2=5} def f2(x): return np.array([ 3 * x[ 0 ] + 2 * x[ 1 ] - 3 ,x[ 0 ] - 2 * x[ 1 ] - 5 ]) sol2_root = root(f2,[ 0 , 0 ]) sol2_fsolve = fsolve(f2,[ 0 , 0 ]) print (sol2_fsolve) # [2. -1.5] a = np.array([[ 3 , 2 ],[ 1 , - 2 ]]) b = np.array([ 3 , 5 ]) x = np.linalg.solve(a,b) print (x) # [2. -1.5] ## 3、求解非线性方程组 def f3(x): return np.array([ 2 * x[ 0 ] * * 2 + 3 * x[ 1 ] - 3 * x[ 2 ] * * 3 - 7 , x[ 0 ] + 4 * x[ 1 ] * * 2 + 8 * x[ 2 ] - 10 , x[ 0 ] - 2 * x[ 1 ] * * 3 - 2 * x[ 2 ] * * 2 + 1 ]) sol3_root = root(f3,[ 0 , 0 , 0 ]) sol3_fsolve = fsolve(f3,[ 0 , 0 , 0 ]) print (sol3_fsolve) ## 4、非线性方程 def f4(x): return np.array(np.sin( 2 * x - np.pi) * np.exp( - x / 5 ) - np.sin(x)) init_guess = np.array([[ 0 ],[ 3 ],[ 6 ],[ 9 ]]) sol4_root = root(f4,init_guess) sol4_fsolve = fsolve(f4,init_guess) print (sol4_fsolve) t = np.linspace( - 2 , 12 , 2000 ) y1 = np.sin( 2 * t - np.pi) * np.exp( - t / 5 ) y2 = np.sin(t) plt.figure( 2 ) a , = plt.plot(t,y1,label = '$sin(2x-\pi)e^{-x/5}$' ) b , = plt.plot(t,y2,label = '$sin(x)$' ) plt.scatter(sol4_fsolve,np.sin(sol4_fsolve),linewidths = 8 ) plt.title( '$sin(2x-\pi)e^{-x/5}$ and $sin(x)$' ) plt.legend() |
以上这篇python scipy求解非线性方程的方法(fsolve/root)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/ouening/article/details/78653774