脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - 对pandas中两种数据类型Series和DataFrame的区别详解

对pandas中两种数据类型Series和DataFrame的区别详解

2021-04-18 00:23jolingcome Python

今天小编就为大家分享一篇对pandas中两种数据类型Series和DataFrame的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1. series相当于数组numpy.array类似

?
1
2
3
4
5
6
7
8
9
s1=pd.series([1,2,4,6,7,2])
s2=pd.series([4,3,1,57,8],index=['a','b','c','d','e'])
print s2
obj1=s2.values
# print obj1
obj2=s2.index
# print obj2
# print s2[s2>4]
# print s2['b']

对pandas中两种数据类型Series和DataFrame的区别详解

1.series 它是有索引,如果我们未指定索引,则是以数字自动生成。

下面是一些例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
obj=series([4,7,-5,3])
print obj
#输出结果如下:
# 0  4
# 1  7
# 2  -5
# 3  3
print obj.values #取出它的值
#[ 4 7 -5 3]
print obj.index #取出索引值
#输出结果如下:
# rangeindex(start=0, stop=4, step=1)
obj2=series([4,7,-5,3],index=['d','b','a','c'])
print obj2
#输出结果如下:
# d  4
# b  7
# a  -5
# c  3
#可以通过索引的方式选择series中的单个或一组值
print obj2['a'] #输出结果:-5
print obj2['d'] #输出结是:4

2. series的一些操作

series.order()进行排序,而dataframe则用sort或者sort_index

?
1
print ratings_by_title.order(ascending=false)[:10]

(1)numpy数组运算(根据布尔型数组进行过滤、标量乘法、应用数学函数等)都会保留索引和值之间的链接

?
1
2
3
4
5
6
7
8
9
10
11
print obj2[obj2>0] #取出>0的值
#输出结果如下:
# d  4
# b  7
# c  3
print obj2*2
#输出结果如下:
# d   8
# b  14
# a  -10
# c   6

(2)还可以将series看成是一个定长的有序字典,因为它是索引值到数据值的一个映射。它可以用在许多原来需要字典参数的函数中。

?
1
print 'b' in obj2 #obj2中有索引'b'?若有就返回'true'

(3)如果数据被存在一个python字典中,也可以直接通过这个字典来创建series.

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
sdata={'ohio':35000,'texax':71000,'oregon':16000,'utah':5000}
obj3=series(sdata)
print obj3
#输出结果如下:
# ohio   35000
# oregon  16000
# texax   71000
# utah    5000
#注:如果只传入一个字典,则结果series中的索引就是原字典的键(有序排列)
states=['california','ohio','oregon','texax']
obj4=series(sdata,index=states) #将sdata字典创建series,索引用states来创建
print obj4
#california在sdata中没有相应的值,故是nan缺省值
# california    nan
# ohio     35000.0
# oregon    16000.0
# texax     71000.0

(4)pandas中的isnull和notnull函数可以用于检测缺失数据,series也有类似的方法

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
print pd.isnull(obj4)
#输出结果如下:
# california   true
# ohio     false
# oregon    false
# texax     false
# dtype: bool
print pd.notnull(obj4)
#输出结果如下:
# california  false
# ohio      true
# oregon     true
# texax     true
# dtype: bool
print obj4.isnull() #series的isnull方法
#输出结果如下:
# california   true
# ohio     false
# oregon    false
# texax     false
# dtype: bool

(5)series最重要的一个功能是:它在算术运算中会自动对齐不同索引的数据。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
print obj3,obj4
# ohio   35000
# oregon  16000
# texax   71000
# utah    5000
# dtype: int64
#
# california    nan
# ohio     35000.0
# oregon    16000.0
# texax     71000.0
# dtype: float64
print obj3+obj4
# california     nan
# ohio      70000.0
# oregon     32000.0
# texax     142000.0
# utah        nan
# dtype: float64

(6)series对象本身及其索引都有一个name属性,该属性跟pandas其他的关键功能关系非常密切

?
1
2
3
4
5
6
7
8
9
10
obj4.name='population'
obj4.index.name='state'
print obj4
#输出如下:加上state和name
# state
# california    nan
# ohio     35000.0
# oregon    16000.0
# texax     71000.0
# name: population, dtype: float64

(7)series的索引可以通过赋值的方式就地修改

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
obj2.index=['bob','steven','jeff','ryan']
print obj2
#输出结果如下:
# bob    4
# steven  7
# jeff   -5
# ryan   3
# dtype: int64
obj2['bob']=15
print obj2
#输出结果如下:
# bob    15
# steven   7
# jeff   -5
# ryan    3
# dtype: int64
print obj2['bob'].values #没有这种表示法,报错。因为类似字典取值,直接取键值即可
print obj2.values #查看所有值

3. dataframe相当于有表格,有行表头和列表头

?
1
2
a=pd.dataframe(np.random.rand(4,5),index=list("abcd"),columns=list('abcde'))
print a

对pandas中两种数据类型Series和DataFrame的区别详解

4.dataframe的一些操作

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#增加列或修改列
a['f']=[1,2,3,4]
a['e']=10
print a
print "======================="
#增加行或修改行
a.ix['d']=10
# print a
s=pd.dataframe(np.random.rand(4,6),index=list('efgh'),columns=list('abcdef'))
a=a.append(s)
print a
print "======================="
#切片
print (a[['b','e']]) #取'b','e'列
print a.loc['a':'d',['a','c','f']] #取'a'-'d'行'a','c','f'列
print "======================="
#减少行或减少列
a=a.drop(['c','d']) #删除'c'行和'd'
print a
a=a.drop('a',axis=1) #删除'a'列,axis=0表示行,axis=1表示列
print a
print "======================="
#缺省值处理
a.iloc[2,3]=none #取第三行第4列值设为none
a.iloc[4,0]=none #取第五行第1列值设为none
print a
a=a.fillna(5) #缺省值处(即nan处填充为5)
print a
#缺省值去行即有缺省值的把这一行都去掉
a.iloc[2,3]=none
a.iloc[4,0]=none
print a
a=a.dropna() #删除缺省值为nan的行
print a
print "======================="
#读取excel,适当改动后,保存到excel中
e1=pd.read_excel('test.xlsx',sheetname='sheet1')
e1.columns=['class','no','name','sex','dormitory','phonenumber']
print(e1)
print(e1.ix[2])
print(e1['class'])
print(e1.sex)
#可将取出的数据处理,处理完后再保存到excel中去
e2=pd.read_excel('test_copy.xlsx',sheetname='sheet1',names='table1',header=none)
e2.columns=['a','b','c','d']
print(e2)
e2.to_excel('test_write.xlsx',header=false,index=false)

(1)构建dataframe 的方法很多,最常用的一种是直接传入一个由等长列表或者numpy数组组成的字典

?
1
2
3
4
5
6
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
from numpy.linalg import inv,qr
from pandas import series,dataframe
import pandas as pd
?
1
2
3
4
5
6
7
8
9
10
11
12
data={'state':['ohio','ohio','ohio','nevada','nevada'],
   'year':[2000,2001,2002,2001,2002],
   'pop':[1.5,1.7,3.6,2.4,2.9]}
frame=dataframe(data)
print frame
#输出的结果如下:
#  pop  state year
# 0 1.5  ohio 2000
# 1 1.7  ohio 2001
# 2 3.6  ohio 2002
# 3 2.4 nevada 2001
# 4 2.9 nevada 2002

(2)如果指定了列序列,则dataframe的列就会按照指定的顺序进行排序

?
1
2
3
4
5
6
7
8
9
frame1=dataframe(data,columns=['year','state','pop'])
print frame1
#输出的结果如下:
#  year  state pop
# 0 2000  ohio 1.5
# 1 2001  ohio 1.7
# 2 2002  ohio 3.6
# 3 2001 nevada 2.4
# 4 2002 nevada 2.9

(3)跟series一样,如果传入的列在数据中找不到,就会产生na值

?
1
2
3
4
5
6
7
8
9
10
11
12
13
frame2=dataframe(data,columns=['year','state','pop','debt'],
         index=['one','two','three','four','five']) #column列的索引,index是行的索引
print frame2
#输出的结果如下:
#    year  state pop debt
# one  2000  ohio 1.5 nan
# two  2001  ohio 1.7 nan
# three 2002  ohio 3.6 nan
# four  2001 nevada 2.4 nan
# five  2002 nevada 2.9 nan
print frame2.columns #输出列的索引
#输出结果如下:
# index([u'year', u'state', u'pop', u'debt'], dtype='object')

(4)类似字典标记的方式或属性的方式,可以将dataframe的列获取为一个series.

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
print frame2['state'] #取出列索引为state的列的数据
#输出结果如下:
# one    ohio
# two    ohio
# three   ohio
# four   nevada
# five   nevada
# name: state, dtype: object
print frame2.year
#输出结果如下:
# one   2000
# two   2001
# three  2002
# four   2001
# five   2002
# name: year, dtype: int64

(5)返回的series拥有原dataframe相同的索引,且其name属性也已经被相应地设置好了。行也可以通过位置或名称的方式进行获取

比如用索引字段ix,ix是取行的索引

?
1
2
3
4
5
6
7
print frame2.ix['three']
#输出的结果如下:
# year   2002
# state  ohio
# pop    3.6
# debt   nan
# name: three, dtype: object

(6)可以通过赋值的方式进行修改。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# frame2['debt']=16.5 #debt列全为16.5
# print frame2
#输出结果如下:
#    year  state pop debt
# one  2000  ohio 1.5 16.5
# two  2001  ohio 1.7 16.5
# three 2002  ohio 3.6 16.5
# four  2001 nevada 2.4 16.5
# five  2002 nevada 2.9 16.5
#将列表或数组赋值给某个列时,其长度必须跟dataframe的长度相匹配。
#如果赋值的是一个series,就会精确匹配dataframe的索引,所有的空位都将被填上缺失值。
frame2['debt']=np.arange(5.)
print frame2
#输出结果如下:
#    year  state pop debt
# one  2000  ohio 1.5  0.0
# two  2001  ohio 1.7  1.0
# three 2002  ohio 3.6  2.0
# four  2001 nevada 2.4  3.0
# five  2002 nevada 2.9  4.0
#赋值一个series
val=series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt']=val
print frame2
#输出结果如下:不在index中的索引的值都赋了nan
#    year  state pop debt
# one  2000  ohio 1.5  nan
# two  2001  ohio 1.7 -1.2
# three 2002  ohio 3.6  nan
# four  2001 nevada 2.4 -1.5
# five  2002 nevada 2.9 -1.7
#为不存在的列赋值会创建出一个新列。关键字del用于删除列。
frame2['eastern']=frame2.state=='ohio' #没有eastern列,固会自动增加一列
#frame2.state=='ohio'如果等于则返回true,否则返回false
print frame2
#    year  state pop debt eastern
# one  2000  ohio 1.5  nan   true
# two  2001  ohio 1.7 -1.2   true
# three 2002  ohio 3.6  nan   true
# four  2001 nevada 2.4 -1.5  false
# five  2002 nevada 2.9 -1.7  false
del frame2['eastern'] #删除eastern列
print frame2
#返回结果如下:
#    year  state pop debt
# one  2000  ohio 1.5  nan
# two  2001  ohio 1.7 -1.2
# three 2002  ohio 3.6  nan
# four  2001 nevada 2.4 -1.5
# five  2002 nevada 2.9 -1.7
print frame2.columns #查看frame2的列
#输出结果如下:index([u'year', u'state', u'pop', u'debt'], dtype='object')

(7)另一种常见的数据形式是嵌套字典(也就是字典的字典)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
pop={'nevada':{2001:2.4,2002:2.9},
   'ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame3=dataframe(pop)
print frame3
#输出的结果如下:
#    nevada ohio
# 2000   nan  1.5
# 2001   2.4  1.7
# 2002   2.9  3.6
#可以对frame进行转置
print frame3.t
#输出结果如下:
#     2000 2001 2002
# nevada  nan  2.4  2.9
# ohio   1.5  1.7  3.6
print dataframe(pop,index=[2001,2002,2003])
#输出结果如下:
#    nevada ohio
# 2001   2.4  1.7
# 2002   2.9  3.6
# 2003   nan  nan
pdata={'ohio':frame3['ohio'][:-1],
    'nevada':frame3['nevada'][:2]}
print dataframe(pdata)
#输出结果如下:
#    nevada ohio
# 2000   nan  1.5
# 2001   2.4  1.7

可以输入给dataframe构造器的数据:

?
1
2
3
4
5
6
7
8
9
10
11
12
二维ndarray          数据矩阵,还可以传入行标和列标
由数组、列表或元组组成的字典  每个序列会变成dataframe的一列,所有序列的长度必须相同
numpy的结构化/记录数组   类似于“由数组组成的字典”
由series组成的字典   每个series会成为一列。如果没显式指定索引,由各series的索引会被合
     并成结果的行索引
由字典组成的字典   各内层字典会成为一列。键会被合并成结果的行索引,跟“由series组成的字典”
     的情况一样
字典或series的列表   各项将会成为dataframe的一行。字典键或series索引的并集将会成为dataframe
     的列标
由列表或元组组成的列表   类似于“二维ndarray”
另一个dataframe   该dataframe的索引将会被沿用,除非显式指定了其它索引
numpy的maskedarray   类似于"二维ndarray"的情况,只是掩码值在结果dataframe会变成na/缺失值
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#如果设置了dataframe的index和columns的name属性,则这些信息也会被显示出来:
frame3.index.name='year';
frame3.columns.name='state'
print frame3
#输出结果如下:
# state nevada ohio
# year
# 2000   nan  1.5
# 2001   2.4  1.7
# 2002   2.9  3.6
#跟series一样,values属性也会以二维ndarray的形式返回dataframe中的数据:
print frame3.values
# [[ nan 1.5]
# [ 2.4 1.7]
# [ 2.9 3.6]]
#如果dataframe各列的数据类型不同,则值数组的数据类型就会选用能兼容所有列的数据类型
print frame2.values
# [[2000 'ohio' 1.5 nan]
# [2001 'ohio' 1.7 -1.2]
# [2002 'ohio' 3.6 nan]
# [2001 'nevada' 2.4 -1.5]
# [2002 'nevada' 2.9 -1.7]]

以上这篇对pandas中两种数据类型series和dataframe的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/u012474716/article/details/78550391

延伸 · 阅读

精彩推荐