服务器之家:专注于服务器技术及软件下载分享
分类导航

DEDECMS|帝国CMS|Discuz|PHPCMS|Wordpress|ZBLOG|ECSHOP|苹果CMS|极致CMS|CMS系统|

服务器之家 - 建站程序 - Discuz - Discuz!NT千万级数据量上的两驾马车 TokyoCabinet,MongoDB

Discuz!NT千万级数据量上的两驾马车 TokyoCabinet,MongoDB

2019-09-30 19:52cnblogs Discuz

在Discuz!NT的企业版设计过程中,处理大数据表一直是一个让人头疼的问题

特别是像主题表(topic),用户表(user)等,因为对于一个流量和发帖量都很大的论坛而言,在运行几年之后,这两个表的数据量可能会破千万(注:因为帖子表采用分表机制,所以这里暂未涉及,但出于性能考虑,也提供了本文中类似的解决方案)。当时考虑的架构设计中有两种思路来解决这种问题:
      一种是采用类似MYSPACE的方式,即按一定记录KEY值(比如用户表的UID)来对大数据表中的记录进行分割,比如前200万用户(即:UID<200w)放入一个表,200-400万的用户放入另一个表,以此类推。当然可以把几个表都放到一个数据库中,也可以放到别的MSSQL数据库上或实例上。但这种方案有一些问题,例如当用户表需要被联表(如LEFT JION)查询时使用,比如我们的帖子表进行分页查询时就需要左联user表,这时如采用分表或分布式布署就可能面临这样的问题,不仅业务逻辑要变化,就连存储过程中也要产生不小的变化,这里还不考虑效率上的问题。当然有人建议可以使用数据冗余的方式,比如在帖子表中冗余用户信息相应字段,但这种方案同样要大幅度的修改即有代码,同时如果用户信息发生变化时,不仅要更新用户表,还要更新帖子表中的相应冗余字段,如果这两者不同步,就会造成数据显示异常,当然在数据库层面增加存储成本也是不得不付出的。
      第二种就是使用能处理大数据量表格的第三方工具,比如本文所说的TokyoTyrant,Mongodb等,这类NOSQL软件从一问世就是面向海量数据存储访问的,而且这类软件往往都是开源的,另外通过与打算布署企业版的用户接触,发现虽然他们的服务器配置很高,但数量即不多,所以就要考虑如何最大限度的复用已有的机器资源,而这类NOSQL软件往往都是‘性价比’很高的,即用不多的资源(内存,CPU等)就能达到意想不到的效果。当然我目前对其还是很谨慎的使用,即不会马上把它当做主力数据存储工具,而是辅助MSSQL数据库工具,所以大家在看完本文后会发现,这两个工具在企业版中的角色顶多就是一个高级的MEMCACEHD。不过我的想法很简单,就是任何工具和技术,如果不是很了解它或者它很新,那么必定要有一个“考核期”,如果在‘任间’内它通过考核,才委以重任,如未通过考核,也不会让系统平台承担过多的技术层面上的‘风险’。

     综上所述,最终我把方向放到了TokyoTyrant,Mongodb上,之所以选择了这两个工具,主要基于下面因素:
    
    1.海量数据的解决方案应该可以跑在LINUX和WINDOW平台上。当然有人会说Mongodb完全可以跑这两个平台,那还为什么要引入TokyoTyrant呢?其实这里有一些产品的特殊情况要考虑,比如我们的用户中绝大多数对于数据的读写比在 4:1,即5条SQL访问中有4条是SELECT操作,1条是CUD操作,这就造成了读写比例的失衡。虽然Mongodb在读写性能上非常优异和稳定,但在并发读上相对于TokyoTyrant+cabinet还是有一些差距(注:更多内容参见该链接,然后这只限于在我们产品中压力测试环境下的结果,不具备普遍性,所以希望大家具体问题具体分析)

    2.考虑到有些用户公司是有相应技术储备的,两种方案也便于用户公司进行的技术选型(当然因为采用接口方式,用户完全可以引入其它第三方的NOSQL工具来实现)。

    好了,说了这么多,开始今天的正文吧。
    
    前面说过,该方案使用了接口方式,这里就先看一下相应的接口声明:
    
   Discuz!NT千万级数据量上的两驾马车 TokyoCabinet,MongoDB    
   

     可以看到,目前在企业版中,对主题表(dnt_topics),用户表(dnt_users),在线表(dnt_online)以及帖子表(dnt_posts)进行了NOSQL数据支持,所以定义了如下的几个接口(图中):
 

复制代码

代码如下:


public interface ICacheTopics 
public interface ICacheUsers 
public interface ICacheOnlineUser 
public interface ICachePosts 


因为目前只是把这类NOSQL工具当作高级的‘缓存’来用,所以接口命名上都带着‘Cache’的字样。 
然后我使用了一个叫做DBCacheService的类,提供获取这几个接口实例的方法,比如ICacheTopics的实例代码如下: 

复制代码

代码如下:


/// <summary> 
/// 该类用于获取NoSqlDb声明的缓存服务 
/// </summary> 
public class DBCacheService 

static ICacheTopics iCacheTopics = null; 
public static ICacheTopics GetTopicsService() 

if (iCacheTopics == null) 

lock (lockHelper) 

if (iCacheTopics == null) 

try 

if (EntLibConfigs.GetConfig().Cachetopics.Enable) 

iCacheTopics = (ICacheTopics)Activator.CreateInstance(Type.GetType( 
EntLibConfigs.GetConfig().Cachetopics.CacheType == 2 ? 
"Discuz.EntLib.TokyoTyrant.Data.Topics, Discuz.EntLib.TokyoTyrant" : 
"Discuz.EntLib.MongoDB.Data.Topics, Discuz.EntLib.MongoDB", false, true)); 


catch 

throw new Exception("请检查" + (EntLibConfigs.GetConfig().Cachetopics.CacheType == 2 ? 
"Discuz.EntLib.TokyoTyrant.dll" : 
"Discuz.EntLib.MongoDB.dll") + "文件是否被放置到了bin目录下!"); 




return iCacheTopics; 


从上面代码可以看出,使用反射方式获取相应DLL文件(分别是Discuz.EntLib.TokyoTyrant.dll和Discuz.EntLib.MongoDB.dll)中的 类信息并初始化该实例。当然,这里还定义了一个配置文件,也就是EntLibConfigs.GetConfig()这个方法所获取的配置文件信息, 相应 配置文件内容包括: 

复制代码

代码如下:


/// <summary> 
/// 提供数据库缓存服务,将在线表主题表这类大表放入缓存之中 
/// </summary> 
public class DBCache 

/// <summary> 
/// 是否有效 
/// </summary> 
public bool Enable = false; 
/// <summary> 
/// 服务地址 
/// </summary> 
public string Host = ""; 
/// <summary> 
/// 服务地址 
/// </summary> 
public int Port = 0; 
/// <summary> 
/// 链接池名称 
/// </summary> 
public string PoolName = "dnt"; 
/// <summary> 
/// 初始化链接数 
/// </summary> 
public int IntConnections = 4; 
/// <summary> 
/// 最少链接数 
/// </summary> 
public int MinConnections = 4; 
/// <summary> 
/// 最大连接数 
/// </summary> 
public int MaxConnections = 4; 
/// <summary> 
/// avaiable pool池中线程的最大空闲时间 
/// </summary> 
public int MaxIdle = 30000; 
/// <summary> 
/// busy pool中线程的最大忙碌时间 
/// </summary> 
public int MaxBusy = 50000; 
/// <summary> 
/// 维护线程休息时间 
/// </summary> 
public int MaintenanceSleep = 300000; 
/// <summary> 
/// TcpClient读操作超时时间 
/// </summary> 
public int TcpClientTimeout = 3000; 
/// <summary> 
/// TcpClient链接超时时间 
/// </summary> 
public int TcpClientConnectTimeout = 30000; 
/// <summary> 
/// 缓存类型1为mongodb,2为tokyotyrnat 
/// </summary> 
public int CacheType = 1; 


上面是配置文件中‘可复用信息’的基类,下面是具体的配置类实例声明: 

复制代码

代码如下:


/// <summary> 
/// 企业版配置信息类文件 
/// </summary> 
public class EntLibConfigInfo : IConfigInfo 

/// <summary> 
/// 提供数据库缓存服务,将在线表(dnt_online)放入CACHE中 
/// </summary> 
public DBCache Cacheonlineuser = new DBCache(); 
/// <summary> 
/// 提供数据库缓存服务,将用户表(dnt_users)放入CACHE中 
/// </summary> 
public DBCache Cacheusers = new DBCache(); 
/// <summary> 
/// 提供数据库缓存服务,将主题表(dnt_topic)放入CACHE中 
/// </summary> 
public DBCache Cachetopics = new DBCache(); 
/// <summary> 
/// 提供数据库缓存服务,将主题表(dnt_topic)放入CACHE中 
/// </summary> 
public DBCache Cacheposts = new DBCache(); 


通过该类,就可以用如下配置文件内容初始化相应的实例了: 

复制代码

代码如下:


<EntLibConfigInfo> 
<Cacheonlineuser> 
<!--在开启该功能之前,请确保相关服务已配置完毕--> 
<Host>10.0.4.119</Host> 
<Port>27017</Port> 
<Enable>false</Enable> 
<PoolName>dnt_online</PoolName> 
<IntConnections>4</IntConnections> 
<MinConnections>4</MinConnections> 
<MaxConnections>4</MaxConnections> 
<MaxIdle>30000</MaxIdle> 
<MaxBusy>50000</MaxBusy> 
<MaintenanceSleep>300000</MaintenanceSleep> 
<TcpClientTimeout>3000</TcpClientTimeout> 
<TcpClientConnectTimeout>30000</TcpClientConnectTimeout> 
<CacheType>1</CacheType> 
</Cacheonlineuser> 
<Cacheusers> 
<!--在开启该功能之前,请确保相关服务已配置完毕--> 
<Host>10.0.4.66</Host> 
<Port>112121</Port> 
<Enable>false</Enable> 
<PoolName>dnt_users</PoolName> 
<IntConnections>4</IntConnections> 
<MinConnections>4</MinConnections> 
<MaxConnections>4</MaxConnections> 
<MaxIdle>30000</MaxIdle> 
<MaxBusy>50000</MaxBusy> 
<MaintenanceSleep>300000</MaintenanceSleep> 
<TcpClientTimeout>3000</TcpClientTimeout> 
<TcpClientConnectTimeout>30000</TcpClientConnectTimeout> 
<CacheType>1</CacheType> 
</Cacheusers> 
<Cachetopics> 
<!--在开启该功能之前,请确保相关服务已配置完毕--> 
<Host>10.0.4.5</Host> 
<Port>27017</Port> 
<Enable>false</Enable> 
<PoolName>dnt_topics</PoolName> 
<IntConnections>25</IntConnections> 
<MinConnections>25</MinConnections> 
<MaxConnections>25</MaxConnections> 
<MaxIdle>30000</MaxIdle> 
<MaxBusy>5000</MaxBusy> 
<MaintenanceSleep>300000</MaintenanceSleep> 
<TcpClientTimeout>300000</TcpClientTimeout> 
<TcpClientConnectTimeout>30000</TcpClientConnectTimeout> 
<CacheType>1</CacheType> 
</Cachetopics> 
<Cacheposts> 
<!--在开启该功能之前,请确保相关服务已配置完毕--> 
<Host>10.0.4.5</Host> 
<Port>27017</Port> 
<Enable>false</Enable> 
<PoolName>dnt_posts</PoolName> 
<IntConnections>25</IntConnections> 
<MinConnections>25</MinConnections> 
<MaxConnections>25</MaxConnections> 
<MaxIdle>30000</MaxIdle> 
<MaxBusy>5000</MaxBusy> 
<MaintenanceSleep>300000</MaintenanceSleep> 
<TcpClientTimeout>300000</TcpClientTimeout> 
<TcpClientConnectTimeout>30000</TcpClientConnectTimeout> 
<CacheType>1</CacheType> 
</Cacheposts> 
</EntLibConfigInfo> 


当然,因为使用的开源的客户源工具在配置上有一定的的差异性(比如命名上等),所以这里有些参数可以对TTCACHE有效,却对MONGODB无效, 不过这并不影响对这两种工具的使用。
 
      这里要说明的是,对于TokyoTrant而言,这里使用的是我开发的这款客户端软件:

 

      http://www.cnblogs.com/daizhj/archive/2010/06/08/tokyotyrantclient.html


      Mongodb使用的是:http://github.com/samus/mongodb-csharp
     
      这里还有个小插曲,之前园子里有朋友介绍了这个客户端NoRM ,不过在我写了一个LINQ示例并进行压力测试后,发现速度不快,比samus的那个客户端慢了不少,在苦找原因无果的情况下,最终选择了samus,不过在samus中目前也支持LINQ的写法(也算是扩展和尝试吧),如下面的写法(更多具体示例还是参见其官方源码包中的相应内容): 
 

复制代码

代码如下:


Mongo db = new Mongo("Servers=10.0.4.5:27017;ConnectTimeout=30000;ConnectionLifetime=300000;MinimumPoolSize=64;MaximumPoolSize=256;Pooled=true"); 
db.Connect(); 
var topicColl = db.GetDatabase("dnt_mongodb").GetCollection<Discuz.EntLib.MongoDB.Entity.TopicInfo>("topics"); 
var topicInfoList = topicColl.Linq().Where(t => t.Fid == 2 && t.Displayorder == 0).Skip(skip).OrderByDescending(t=>t.Lastpostid).Take(16).ToList(); 
Discuz.Common.Generic.List<TopicInfo> topicList = new List<TopicInfo>(); 
foreach (var topic in topicInfoList) 

topicList.Add(LoadTopicInfo(topic)); 

db.Disconnect(); 
return topicList; 


不过在使用上述代码进行1500万主题分页时,发现LR的测试周期延长(前者(document方式)从2:10秒延长到后者(linq)2:30秒)和吞吐量降低。 
所以这里还是最终延用了samus的document访问方式,参照上面的LINQ写法,下面是document写法,形如: 

复制代码

代码如下:


public Discuz.Common.Generic.List<TopicInfo> GetTopicList(int fid, int pageSize, int pageIndex, int startNumber) 

int skip = 0; 
if (pageIndex <= 1) 
pageSize = pageSize - startNumber; 
else 
skip = (pageIndex - 1) * pageSize - startNumber; 
Discuz.Common.Generic.List<TopicInfo> topicInfoList = new Common.Generic.List<TopicInfo>(); 
System.Collections.Generic.List<Document> docList = MongoDbHelper.Find(mongoDB, "topics", 
new Document().Add("fid", fid).Add("displayorder", 0), "lastpostid", IndexOrder.Descending, pageSize, skip); 
return docList; 


如果在你的项目中非要使用LINQ方式的话,那在这里再要介绍的一个samus的属性绑定功能,这个功能对于那些数据库字段与代码中的属性存在 “大小写”差异的情况下,非常有用,即对相应实体类进行‘别名’的绑定,比如对于主题表(需引入MongoDB.Attributes名空间): 

复制代码

代码如下:


/// <summary> 
/// 主题信息描述类 
/// </summary> 
public class TopicInfo : Discuz.Entity.TopicInfo 

[MongoAlias("attention")] 
public new int Attention { get; set; } 
///<summary> 
///主题tid 
///</summary> 
[MongoAlias("tid")] 
public new int Tid { get; set; } 
/// <summary> 
/// 板块名称 
/// </summary> 
[MongoAlias("forumname")] 
public new string Forumname { get; set; } 
///<summary> 
///版块fid 
///</summary> 
[MongoAlias("fid")] 
public new int Fid { get; set; } 
///<summary> 
///主题图标id 
///</summary> 
[MongoAlias("iconid")] 
public new int Iconid { get; set; } 
...... 


上面的MongoAlias属性就是属性别名,它就是MONGODB中所存储的数据字段名称。 

介绍到这里,再回到正文。 
因为这两个工具都是在数据库层面进行缓存的,所以它对于原有的DISCUZ!NT中的缓存系统而言,与数据库帖的更近,所以对原有的业务逻辑改造, 
就停留在了数据访问层"DISCUZ.DATA.dll"中了,其实到这里,就看出了当初为什么要分层,以及分层带来的好处了。 
比如在Discuz.Data.Topics这个类中添加了这两个静态变量: 

复制代码

代码如下:


/// <summary> 
/// 是否启用TokyoTyrantCache缓存用户表 
/// </summary> 
public static bool appDBCache = (EntLibConfigs.GetConfig() != null && EntLibConfigs.GetConfig().Cachetopics.Enable); 
public static ICacheTopics ITopicService = appDBCache ? DBCacheService.GetTopicsService() : null; 


前者用户判断是否启用主题缓存,后者则获取相应的缓存服务实例(前面配置文件中已做相应说明)。 
这样,在已有的数据访问代码中加入相应的缓存逻辑,比如获取主题信息: 

复制代码

代码如下:


/// <summary> 
/// 获得主题信息 
/// </summary> 
/// <param name="tid">要获得的主题ID</param> 
/// <param name="fid">版块ID</param> 
/// <param name="mode">模式选择, 0=当前主题, 1=上一主题, 2=下一主题</param> 
public static TopicInfo GetTopicInfo(int tid, int fid, byte mode) 

TopicInfo topicInfo = null; 
if (appDBCache)//新增代码 
topicInfo = ITopicService.GetTopicInfo(tid, fid, mode); 
if(topicInfo == null) 

//原代码 
IDataReader reader = DatabaseProvider.GetInstance().GetTopicInfo(tid, fid, mode); 
if (reader.Read()) 
topicInfo = LoadSingleTopicInfo(reader); 
reader.Close(); 
if (appDBCache && topicInfo != null) 
ITopicService.CreateTopic(topicInfo); 

return topicInfo; 


当然,因为使用了缓存方式,所以就牵扯到缓存中的数据与数据库中数据的一致性问题,所以对于主题的CUD操作,也要对应有相应的对缓存的操作,这基本上就是一个工作量的问题了。因为无论是TTCACHED,还是MONGODB,都支持更新操作。 
比如同样是更新主题附件类型的操作,下面是TTCACHED的写法: 

复制代码

代码如下:


/// <summary> 
/// 更新主题附件类型 
/// </summary> 
/// <param name="tid">主题Id</param> 
/// <param name="attType">附件类型,1普通附件,2为图片附件</param> 
/// <returns></returns> 
public int UpdateTopicAttachmentType(int tid, int attType) 

var qrecords = TokyoTyrantService.QueryRecords(pool, new Query().NumberEquals("tid", tid)); 
foreach (string key in qrecords.Keys) 

var column = qrecords[key]; 
column["attachment"] = attType.ToString(); 
TokyoTyrantService.PutColumns(pool, column["tid"], column, true); 
break; 

return 1; 


下面是MongoDB的写法 

复制代码

代码如下:


/// <summary> 
/// 更新主题附件类型 
/// </summary> 
/// <param name="tid">主题Id</param> 
/// <param name="attType">附件类型,1普通附件,2为图片附件</param> 
/// <returns></returns> 
public int UpdateTopicAttachmentType(int tid, int attType) 

MongoDbHelper.Update(mongoDB, "topics", 
new Document() { { "$set", new Document() { { "attachment", attType } } } }, 
new Document().Add("_id", tid)); 
return 1; 


通过对比可以看出,MONGODB可以对某一字段进行操作,而TTCACEHD则只能通过查询先获取整条记录,然后修改某一‘字段’,之后再整条提交更新,所以单从这一角度讲,MONGDOB要比TTCACHED更新性能要高许多(之后的测试结果也说明了这一点)。
   
      正如之前所说的那样,如用户对于这两个接口实现方案均不满意,那么他可以使用其它类型的NOSQL数据库,只要实现了相应的接口:
     public interface ICacheTopics
     public interface ICacheUsers
     public interface ICacheOnlineUser
     public interface ICachePosts     
       并在配置文件中进行相应的配置就可以了,当然本文中代码因为时间问题还是有待考量的,但主要的架构设计思想基本被确定下来了。
 
 
      当然对于原有的数据库中的记录,如果要使用本方案,我提供了转换工具,用于把数据转到TTCACHED或MONGODB中的任一服务端上。如下:
 
     TTCACEHD:
     Discuz!NT千万级数据量上的两驾马车 TokyoCabinet,MongoDB
     
     MongoDB(目前比TTACEHD多了帖子分表转换功能):
    Discuz!NT千万级数据量上的两驾马车 TokyoCabinet,MongoDB
 
 
      最后在压力测试过程中,还出现了一些小问题,好在对着官方文档,逐步优化解决了,这里要特别说一下MONGDOB,其文件的详细程度要好于TTCACHED,基本上主要的功能都有详细的介绍说明页面,呵呵。当然TTCACHED的诞生时间要比MONGODB早,所以在生产环境下的成功案例也相对多一些。
     
     
     下面列了一下使用过程中的小问题,仅作记录:            
      
      TokyoTyrant的使用问题:尽量不要在查询的列表中使用排序操作,因为它的排序效率还不如数据库高。尽量使用索引进行查询
                   键值操作。2000w记录以下查询效率很高,但更高的数据量上目前没做过压力测试(包括CRUD操作)
      
      Mongodb:尽量使用_ID做为查询键值操作,包括排序等,对索引进行优化(单列或多列进行索引)。

延伸 · 阅读

精彩推荐