服务器之家:专注于服务器技术及软件下载分享
分类导航

Mysql|Sql Server|Oracle|Redis|MongoDB|PostgreSQL|Sqlite|DB2|mariadb|Access|数据库技术|

服务器之家 - 数据库 - PostgreSQL - postgresql 中的 like 查询优化方案

postgresql 中的 like 查询优化方案

2021-04-06 18:39Q23986087 PostgreSQL

这篇文章主要介绍了postgresql 中的 like 查询优化方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

当时数量量比较庞大的时候,做模糊查询效率很慢,为了优化查询效率,尝试如下方法做效率对比

一、对比情况说明:

1、数据量100w条数据

2、执行sql

二、对比结果

?
1
2
3
4
5
6
7
8
9
10
11
12
explain analyze SELECT
 c_patent,
 c_applyissno,
 d_applyissdate,
 d_applydate,
 c_patenttype_dimn,
 c_newlawstatus,
 c_abstract
FROM
 public.t_knowl_patent_zlxx_temp
WHERE
 c_applicant LIKE '%本溪满族自治县连山关镇安平安养殖场%';

1、未建索时执行计划:

?
1
2
3
4
5
6
7
8
"Gather (cost=1000.00..83803.53 rows=92 width=1278) (actual time=217.264..217.264 rows=0 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on t_knowl_patent_zlxx (cost=0.00..82794.33 rows=38 width=1278) (actual time=212.355..212.355 rows=0 loops=3)
  Filter: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text)
  Rows Removed by Filter: 333333
Planning time: 0.272 ms
Execution time: 228.116 ms"

2、btree索引

建索引语句

?
1
CREATE INDEX idx_public_t_knowl_patent_zlxx_applicant ON public.t_knowl_patent_zlxx(c_applicant varchar_pattern_ops);

执行计划

?
1
2
3
4
5
6
7
8
"Gather (cost=1000.00..83803.53 rows=92 width=1278) (actual time=208.253..208.253 rows=0 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on t_knowl_patent_zlxx (cost=0.00..82794.33 rows=38 width=1278) (actual time=203.573..203.573 rows=0 loops=3)
  Filter: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text)
  Rows Removed by Filter: 333333
Planning time: 0.116 ms
Execution time: 218.189 ms"

但是如果将查询sql稍微改动一下,把like查询中的前置%去掉是这样的

?
1
2
3
4
5
Index Scan using idx_public_t_knowl_patent_zlxx_applicant on t_knowl_patent_zlxx_temp (cost=0.55..8.57 rows=92 width=1278) (actual time=0.292..0.292 rows=0 loops=1)
 Index Cond: (((c_applicant)::text ~>=~ '本溪满族自治县连山关镇安平安养殖场'::text) AND ((c_applicant)::text ~<~ '本溪满族自治县连山关镇安平安养殖圻'::text))
 Filter: ((c_applicant)::text ~~ '本溪满族自治县连山关镇安平安养殖场%'::text)
Planning time: 0.710 ms
Execution time: 0.378 ms

3、gin索引

创建索引语句(postgresql要求在9.6版本及以上)

?
1
2
create extension pg_trgm;
CREATE INDEX idx_public_t_knowl_patent_zlxx_applicant ON public.t_knowl_patent_zlxx USING gin (c_applicant gin_trgm_ops);

执行计划

?
1
2
3
4
5
6
Bitmap Heap Scan on t_knowl_patent_zlxx (cost=244.71..600.42 rows=91 width=1268) (actual time=0.649..0.649 rows=0 loops=1)
 Recheck Cond: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text)
 -> Bitmap Index Scan on idx_public_t_knowl_patent_zlxx_applicant (cost=0.00..244.69 rows=91 width=0) (actual time=0.647..0.647 rows=0 loops=1)
  Index Cond: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text)
Planning time: 0.673 ms
Execution time: 0.740 ms

三、结论

btree索引可以让后置% "abc%"的模糊匹配走索引,gin + gp_trgm可以让前后置% "%abc%" 走索引。但是gin 索引也有弊端,以下情况可能导致无法命中:

搜索字段少于3个字符时,不会命中索引,这是gin自身机制导致。

当搜索字段过长时,比如email检索,可能也不会命中索引,造成原因暂时未知。

补充:PostgreSQL LIKE 查询效率提升实验

一、未做索引的查询效率

作为对比,先对未索引的查询做测试

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
EXPLAIN ANALYZE select * from gallery_map where author = '曹志耘';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=1025 width=621) (actual time=0.011..39.753 rows=1031 loops=1)
 Filter: ((author)::text = '曹志耘'::text)
 Rows Removed by Filter: 71315
 Planning time: 0.194 ms
 Execution time: 39.879 ms
(5 rows)
 
Time: 40.599 ms
EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=1025 width=621) (actual time=0.017..41.513 rows=1031 loops=1)
 Filter: ((author)::text ~~ '曹志耘'::text)
 Rows Removed by Filter: 71315
 Planning time: 0.188 ms
 Execution time: 41.669 ms
(5 rows)
 
Time: 42.457 ms
 
EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘%';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.017..41.492 rows=1031 loops=1)
 Filter: ((author)::text ~~ '曹志耘%'::text)
 Rows Removed by Filter: 71315
 Planning time: 0.307 ms
 Execution time: 41.633 ms
(5 rows)
 
Time: 42.676 ms

很显然都会做全表扫描

二、创建btree索引

PostgreSQL默认索引是btree

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
CREATE INDEX ix_gallery_map_author ON gallery_map (author);
 
EXPLAIN ANALYZE select * from gallery_map where author = '曹志耘'
                QUERY PLAN               
-------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on gallery_map (cost=36.36..2715.37 rows=1025 width=621) (actual time=0.457..1.312 rows=1031 loops=1)
 Recheck Cond: ((author)::text = '曹志耘'::text)
 Heap Blocks: exact=438
 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..36.10 rows=1025 width=0) (actual time=0.358..0.358 rows=1031 loops=1)
   Index Cond: ((author)::text = '曹志耘'::text)
 Planning time: 0.416 ms
 Execution time: 1.422 ms
(7 rows)
 
Time: 2.462 ms
 
EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘';
                QUERY PLAN               
-------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on gallery_map (cost=36.36..2715.37 rows=1025 width=621) (actual time=0.752..2.119 rows=1031 loops=1)
 Filter: ((author)::text ~~ '曹志耘'::text)
 Heap Blocks: exact=438
 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..36.10 rows=1025 width=0) (actual time=0.560..0.560 rows=1031 loops=1)
   Index Cond: ((author)::text = '曹志耘'::text)
 Planning time: 0.270 ms
 Execution time: 2.295 ms
(7 rows)
 
Time: 3.444 ms
EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘%';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.015..41.389 rows=1031 loops=1)
 Filter: ((author)::text ~~ '曹志耘%'::text)
 Rows Removed by Filter: 71315
 Planning time: 0.260 ms
 Execution time: 41.518 ms
(5 rows)
 
Time: 42.430 ms
EXPLAIN ANALYZE select * from gallery_map where author like '%研究室';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=2282 width=621) (actual time=0.064..52.824 rows=2152 loops=1)
 Filter: ((author)::text ~~ '%研究室'::text)
 Rows Removed by Filter: 70194
 Planning time: 0.254 ms
 Execution time: 53.064 ms
(5 rows)
 
Time: 53.954 ms

可以看到,等于、like的全匹配是用到索引的,like的模糊查询还是全表扫描

三、创建gin索引

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
CREATE EXTENSION pg_trgm;
 
CREATE INDEX ix_gallery_map_author ON gallery_map USING gin (author gin_trgm_ops);
EXPLAIN ANALYZE select * from gallery_map where author like '曹%';
                QUERY PLAN               
-------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on gallery_map (cost=19.96..2705.69 rows=1028 width=621) (actual time=0.419..1.771 rows=1031 loops=1)
 Recheck Cond: ((author)::text ~~ '曹%'::text)
 Heap Blocks: exact=438
 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..19.71 rows=1028 width=0) (actual time=0.312..0.312 rows=1031 loops=1)
   Index Cond: ((author)::text ~~ '曹%'::text)
 Planning time: 0.358 ms
 Execution time: 1.916 ms
(7 rows)
 
Time: 2.843 ms
EXPLAIN ANALYZE select * from gallery_map where author like '%耘%';
             QUERY PLAN            
-----------------------------------------------------------------------------------------------------------------
 Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.015..51.641 rows=1031 loops=1)
 Filter: ((author)::text ~~ '%耘%'::text)
 Rows Removed by Filter: 71315
 Planning time: 0.268 ms
 Execution time: 51.957 ms
(5 rows)
 
Time: 52.899 ms
EXPLAIN ANALYZE select * from gallery_map where author like '%研究室%';
                QUERY PLAN               
-------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on gallery_map (cost=31.83..4788.42 rows=2559 width=621) (actual time=0.914..4.195 rows=2402 loops=1)
 Recheck Cond: ((author)::text ~~ '%研究室%'::text)
 Heap Blocks: exact=868
 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..31.19 rows=2559 width=0) (actual time=0.694..0.694 rows=2402 loops=1)
   Index Cond: ((author)::text ~~ '%研究室%'::text)
 Planning time: 0.306 ms
 Execution time: 4.403 ms
(7 rows)
 
Time: 5.227 ms

gin_trgm索引的效果好多了

由于pg_trgm的索引是把字符串切成多个3元组,然后使用这些3元组做匹配,所以gin_trgm索引对于少于3个字符(包括汉字)的查询,只有前缀匹配会走索引

另外,还测试了btree_gin,效果和btree一样

注意:

gin_trgm要求数据库必须使用UTF-8编码

?
1
2
3
4
5
demo_v1 # \l demo_v1
        List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
---------+-----------+----------+-------------+-------------+-------------------
 demo_v1 | wmpp_user | UTF8  | en_US.UTF-8 | en_US.UTF-8 |

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blog.csdn.net/qq_23986087/article/details/104021214

延伸 · 阅读

精彩推荐
  • PostgreSQLPostgresql查询效率计算初探

    Postgresql查询效率计算初探

    这篇文章主要给大家介绍了关于Postgresql查询效率计算的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Postgresql具有一定的参考学习价...

    轨迹4622020-05-03
  • PostgreSQLPostgresql开启远程访问的步骤全纪录

    Postgresql开启远程访问的步骤全纪录

    postgre一般默认为本地连接,不支持远程访问,所以如果要开启远程访问,需要更改安装文件的配置。下面这篇文章主要给大家介绍了关于Postgresql开启远程...

    我勒个去6812020-04-30
  • PostgreSQLRDS PostgreSQL一键大版本升级技术解密

    RDS PostgreSQL一键大版本升级技术解密

    一、PostgreSQL行业位置 (一)行业位置 在讨论PostgreSQL(下面简称为PG)在整个数据库行业的位置之前,我们先看一下阿里云数据库在全球的数据库行业里的...

    未知1192023-05-07
  • PostgreSQLpostgresql 中的to_char()常用操作

    postgresql 中的to_char()常用操作

    这篇文章主要介绍了postgresql 中的to_char()常用操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    J符离13432021-04-12
  • PostgreSQLpostgresql 数据库中的数据转换

    postgresql 数据库中的数据转换

    postgres8.3以后,字段数据之间的默认转换取消了。如果需要进行数据变换的话,在postgresql数据库中,我们可以用"::"来进行字段数据的类型转换。...

    postgresql教程网12482021-10-08
  • PostgreSQL分布式 PostgreSQL之Citus 架构

    分布式 PostgreSQL之Citus 架构

    节点 Citus 是一种 PostgreSQL 扩展,它允许数据库服务器(称为节点)在“无共享(shared nothing)”架构中相互协调。这些节点形成一个集群,允许 PostgreSQL 保存比单...

    未知802023-05-07
  • PostgreSQL深入理解PostgreSQL的MVCC并发处理方式

    深入理解PostgreSQL的MVCC并发处理方式

    这篇文章主要介绍了深入理解PostgreSQL的MVCC并发处理方式,文中同时介绍了MVCC的缺点,需要的朋友可以参考下 ...

    PostgreSQL教程网3622020-04-25
  • PostgreSQLPostgreSQL标准建表语句分享

    PostgreSQL标准建表语句分享

    这篇文章主要介绍了PostgreSQL标准建表语句分享,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    码上得天下7962021-02-27