场景说明
假设有一个mysql表被水平切分,分散到多个host中,每个host拥有n个切分表。
如果需要并发去访问这些表,快速得到查询结果, 应该怎么做呢?
这里提供一种方案,利用python3的asyncio异步io库及aiomysql异步库去实现这个需求。
代码演示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
import logging import random import asynciofrom aiomysql import create_pool # 假设mysql表分散在8个host, 每个host有16张子表 TBLES = { "192.168.1.01" : "table_000-015" , # 000-015表示该ip下的表明从table_000一直连续到table_015 "192.168.1.02" : "table_016-031" , "192.168.1.03" : "table_032-047" , "192.168.1.04" : "table_048-063" , "192.168.1.05" : "table_064-079" , "192.168.1.06" : "table_080-095" , "192.168.1.07" : "table_096-0111" , "192.168.1.08" : "table_112-0127" , } USER = "xxx" PASSWD = "xxxx" # wrapper函数,用于捕捉异常def query_wrapper(func): async def wrapper( * args, * * kwargs): try : await func( * args, * * kwargs) except Exception as e: print (e) return wrapper # 实际的sql访问处理函数,通过aiomysql实现异步非阻塞请求@ query_wrapperasync def query_do_something(ip, db, table): async with create_pool(host = ip, db = db, user = USER, password = PASSWD) as pool: async with pool.get() as conn: async with conn.cursor() as cur: sql = ( "select xxx from {} where xxxx" ) await cur.execute(sql. format (table)) res = await cur.fetchall() # then do something...# 生成sql访问队列, 队列的每个元素包含要对某个表进行访问的函数及参数def gen_tasks(): tasks = [] for ip, tbls in TBLES.items(): cols = re.split( '_|-' , tbls) tblpre = "_" .join(cols[: - 2 ]) min_num = int (cols[ - 2 ]) max_num = int (cols[ - 1 ]) for num in range (min_num, max_num + 1 ): tasks.append( (query_do_something, ip, 'your_dbname' , '{}_{}' . format (tblpre, num)) ) random.shuffle(tasks) return tasks # 按批量运行sql访问请求队列def run_tasks(tasks, batch_len): try : for idx in range ( 0 , len (tasks), batch_len): batch_tasks = tasks[idx:idx + batch_len] logging.info( "current batch, start_idx:%s len:%s" % (idx, len (batch_tasks))) for i in range ( 0 , len (batch_tasks)): l = batch_tasks[i] batch_tasks[i] = asyncio.ensure_future( l[ 0 ]( * l[ 1 :]) ) loop.run_until_complete(asyncio.gather( * batch_tasks)) except Exception as e: logging.warn(e) # main方法, 通过asyncio实现函数异步调用def main(): loop = asyncio.get_event_loop() tasks = gen_tasks() batch_len = len (TBLES.keys()) * 5 # all up to you run_tasks(tasks, batch_len) loop.close() |
以上就是本次相关内容的全部实例代码,大家可以本地测试以下,感谢你对服务器之家的支持。