脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python判断数字是否是超级素数幂

python判断数字是否是超级素数幂

2021-04-05 00:03冬日新雨 Python

这篇文章主要为大家详细介绍了python判断数字是否是超级素数幂,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

如果一个数字能表示成 p^q,且p是一个素数,q为大于1的正整数,则此数字就是超级素数幂。
param number: 测试该数字是否是超级素数幂
return: 如果不是就返回 False,如果是就返回 p 和 q 值
例如,输入125,返回(5,3)

代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import math
 
 
def get_prime(number):
  '''
  寻找小于number的所有的质数,时间复杂度o(n^2)
  '''
  if number <= 1:
    print 'Wrong given number.'
    return
  prime = []
  for i in xrange(2, number+1):
    j = 2
    while j < i:
      if i % j == 0:
        break
      j += 1
    if j == i:
      prime.append(i)
  return prime
 
def super_prime_power(number):
  scope = int(math.ceil(math.sqrt(number))) # 开根号除掉一部分不需要的数
  prime_number = get_prime(scope)
  be_tested = []
  for i in prime_number: # 先将无法被整数的排除掉
    if number % i == 0:
      be_tested.append(i)
  for p in be_tested:
    q = 2
    while p ** q <= number:
      if p ** q == number:
        return (p, q)
      q += 1
  return False
 
print super_prime_power(999)

分析:

总的时间复杂度为o(sqrt(n)log n),再加上寻找质数花费的时间,总的时间复杂度为o(n^2 sqrt(n)log n)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/dongrixinyu/article/details/78737849

延伸 · 阅读

精彩推荐