脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - TensorFlow实现Logistic回归

TensorFlow实现Logistic回归

2021-04-01 00:18不凡De老五 Python

这篇文章主要为大家详细介绍了TensorFlow实现Logistic回归的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了TensorFlow实现Logistic回归的具体代码,供大家参考,具体内容如下

1.导入模块

?
1
2
3
4
5
6
7
8
9
10
11
12
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
 
from matplotlib import pyplot as plt
%matplotlib inline
 
#导入tensorflow
import tensorflow as tf
 
#导入MNIST(手写数字数据集)
from tensorflow.examples.tutorials.mnist import input_data

2.获取训练数据和测试数据

?
1
2
3
4
5
6
7
8
9
10
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
 
mnist = input_data.read_data_sets('./TensorFlow',one_hot=True)
 
test = mnist.test
test_images = test.images
 
train = mnist.train
images = train.images

3.模拟线性方程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
#创建占矩阵位符X,Y
X = tf.placeholder(tf.float32,shape=[None,784])
Y = tf.placeholder(tf.float32,shape=[None,10])
 
#随机生成斜率W和截距b
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
 
#根据模拟线性方程得出预测值
y_pre = tf.matmul(X,W)+b
 
#将预测值结果概率化
y_pre_r = tf.nn.softmax(y_pre)

4.构造损失函数

?
1
2
3
# -y*tf.log(y_pre_r) --->-Pi*log(Pi)  信息熵公式
 
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(y_pre_r),axis=1))

5.实现梯度下降,获取最小损失函数

?
1
2
3
#learning_rate:学习率,是进行训练时在最陡的梯度方向上所采取的「步」长;
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

6.TensorFlow初始化,并进行训练

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#定义相关参数
 
#训练循环次数
training_epochs = 25
#batch 一批,每次训练给算法10个数据
batch_size = 10
#每隔5次,打印输出运算的结果
display_step = 5
 
 
#预定义初始化
init = tf.global_variables_initializer()
 
#开始训练
with tf.Session() as sess:
  #初始化
  sess.run(init)
  #循环训练次数
  for epoch in range(training_epochs):
    avg_cost = 0.
    #总训练批次total_batch =训练总样本量/每批次样本数量
    total_batch = int(train.num_examples/batch_size)
    for i in range(total_batch):
      #每次取出100个数据作为训练数据
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      _, c = sess.run([optimizer,cost],feed_dict={X:batch_xs,Y:batch_ys})
      avg_cost +=c/total_batch
    if(epoch+1)%display_step == 0:
      print(batch_xs.shape,batch_ys.shape)
      print('epoch:','%04d'%(epoch+1),'cost=','{:.9f}'.format(avg_cost))
  print('Optimization Finished!')
 
  #7.评估效果
  # Test model
  correct_prediction = tf.equal(tf.argmax(y_pre_r,1),tf.argmax(Y,1))
  # Calculate accuracy for 3000 examples
  # tf.cast类型转换
  accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
  print("Accuracy:",accuracy.eval({X: mnist.test.images[:3000], Y: mnist.test.labels[:3000]}))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/weixin_38748717/article/details/78859124

延伸 · 阅读

精彩推荐