我们需要评估模型预测值来评估训练的好坏。
模型评估是非常重要的,随后的每个模型都有模型评估方式。使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估。
在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试、提高或者改变整个模型。但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它。
训练模型之后,需要定量评估模型的性能如何。在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集。
想评估一个模型时就得使用大批量数据点。如果完成批量训练,我们可以重用模型来预测批量数据点。但是如果要完成随机训练,就不得不创建单独的评估器来处理批量数据点。
分类算法模型基于数值型输入预测分类值,实际目标是1和0的序列。我们需要度量预测值与真实值之间的距离。分类算法模型的损失函数一般不容易解释模型好坏,所以通常情况是看下准确预测分类的结果的百分比。
不管算法模型预测的如何,我们都需要测试算法模型,这点相当重要。在训练数据和测试数据上都进行模型评估,以搞清楚模型是否过拟合。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
# TensorFlowm模型评估 # # This code will implement two models. The first # is a simple regression model, we will show how to # call the loss function, MSE during training, and # output it after for test and training sets. # # The second model will be a simple classification # model. We will also show how to print percent # classified correctly during training and after # for both the test and training sets. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 创建计算图 sess = tf.Session() # 回归例子: # We will create sample data as follows: # x-data: 100 random samples from a normal ~ N(1, 0.1) # target: 100 values of the value 10. # We will fit the model: # x-data * A = target # 理论上, A = 10. # 声明批量大小 batch_size = 25 # 创建数据集 x_vals = np.random.normal( 1 , 0.1 , 100 ) y_vals = np.repeat( 10. , 100 ) x_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) # 八二分训练/测试数据 train/test = 80%/20% train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False ) test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 创建变量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) # 增加操作到计算图 my_output = tf.matmul(x_data, A) # 增加L2损失函数到计算图 loss = tf.reduce_mean(tf.square(my_output - y_target)) # 创建优化器 my_opt = tf.train.GradientDescentOptimizer( 0.02 ) train_step = my_opt.minimize(loss) # 初始化变量 init = tf.global_variables_initializer() sess.run(init) # 迭代运行 # 如果在损失函数中使用的模型输出结果经过转换操作,例如,sigmoid_cross_entropy_with_logits()函数, # 为了精确计算预测结果,别忘了在模型评估中也要进行转换操作。 for i in range ( 100 ): rand_index = np.random.choice( len (x_vals_train), size = batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) if (i + 1 ) % 25 = = 0 : print ( 'Step #' + str (i + 1 ) + ' A = ' + str (sess.run(A))) print ( 'Loss = ' + str (sess.run(loss, feed_dict = {x_data: rand_x, y_target: rand_y}))) # 评估准确率(loss) mse_test = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) mse_train = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) print ( 'MSE on test:' + str (np. round (mse_test, 2 ))) print ( 'MSE on train:' + str (np. round (mse_train, 2 ))) # 分类算法案例 # We will create sample data as follows: # x-data: sample 50 random values from a normal = N(-1, 1) # + sample 50 random values from a normal = N(1, 1) # target: 50 values of 0 + 50 values of 1. # These are essentially 100 values of the corresponding output index # We will fit the binary classification model: # If sigmoid(x+A) < 0.5 -> 0 else 1 # Theoretically, A should be -(mean1 + mean2)/2 # 重置计算图 ops.reset_default_graph() # 加载计算图 sess = tf.Session() # 声明批量大小 batch_size = 25 # 创建数据集 x_vals = np.concatenate((np.random.normal( - 1 , 1 , 50 ), np.random.normal( 2 , 1 , 50 ))) y_vals = np.concatenate((np.repeat( 0. , 50 ), np.repeat( 1. , 50 ))) x_data = tf.placeholder(shape = [ 1 , None ], dtype = tf.float32) y_target = tf.placeholder(shape = [ 1 , None ], dtype = tf.float32) # 分割数据集 train/test = 80%/20% train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False ) test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 创建变量 (one model parameter = A) A = tf.Variable(tf.random_normal(mean = 10 , shape = [ 1 ])) # Add operation to graph # Want to create the operstion sigmoid(x + A) # Note, the sigmoid() part is in the loss function my_output = tf.add(x_data, A) # 增加分类损失函数 (cross entropy) xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = my_output, labels = y_target)) # Create Optimizer my_opt = tf.train.GradientDescentOptimizer( 0.05 ) train_step = my_opt.minimize(xentropy) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # 运行迭代 for i in range ( 1800 ): rand_index = np.random.choice( len (x_vals_train), size = batch_size) rand_x = [x_vals_train[rand_index]] rand_y = [y_vals_train[rand_index]] sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y}) if (i + 1 ) % 200 = = 0 : print ( 'Step #' + str (i + 1 ) + ' A = ' + str (sess.run(A))) print ( 'Loss = ' + str (sess.run(xentropy, feed_dict = {x_data: rand_x, y_target: rand_y}))) # 评估预测 # 用squeeze()函数封装预测操作,使得预测值和目标值有相同的维度。 y_prediction = tf.squeeze(tf. round (tf.nn.sigmoid(tf.add(x_data, A)))) # 用equal()函数检测是否相等, # 把得到的true或false的boolean型张量转化成float32型, # 再对其取平均值,得到一个准确度值。 correct_prediction = tf.equal(y_prediction, y_target) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) acc_value_test = sess.run(accuracy, feed_dict = {x_data: [x_vals_test], y_target: [y_vals_test]}) acc_value_train = sess.run(accuracy, feed_dict = {x_data: [x_vals_train], y_target: [y_vals_train]}) print ( 'Accuracy on train set: ' + str (acc_value_train)) print ( 'Accuracy on test set: ' + str (acc_value_test)) # 绘制分类结果 A_result = - sess.run(A) bins = np.linspace( - 5 , 5 , 50 ) plt.hist(x_vals[ 0 : 50 ], bins, alpha = 0.5 , label = 'N(-1,1)' , color = 'white' ) plt.hist(x_vals[ 50 : 100 ], bins[ 0 : 50 ], alpha = 0.5 , label = 'N(2,1)' , color = 'red' ) plt.plot((A_result, A_result), ( 0 , 8 ), 'k--' , linewidth = 3 , label = 'A = ' + str (np. round (A_result, 2 ))) plt.legend(loc = 'upper right' ) plt.title( 'Binary Classifier, Accuracy=' + str (np. round (acc_value_test, 2 ))) plt.show() |
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
Step #25 A = [[ 5.79096079]] Loss = 16.8725 Step #50 A = [[ 8.36085415]] Loss = 3.60671 Step #75 A = [[ 9.26366138]] Loss = 1.05438 Step #100 A = [[ 9.58914948]] Loss = 1.39841 MSE on test: 1.04 MSE on train: 1.13 Step #200 A = [ 5.83126402] Loss = 1.9799 Step #400 A = [ 1.64923656] Loss = 0.678205 Step #600 A = [ 0.12520729] Loss = 0.218827 Step #800 A = [-0.21780498] Loss = 0.223919 Step #1000 A = [-0.31613481] Loss = 0.234474 Step #1200 A = [-0.33259964] Loss = 0.237227 Step #1400 A = [-0.28847221] Loss = 0.345202 Step #1600 A = [-0.30949864] Loss = 0.312794 Step #1800 A = [-0.33211425] Loss = 0.277342 Accuracy on train set : 0.9625 Accuracy on test set : 1.0 |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/lilongsy/article/details/79268443