numpy中有两个函数可以用来读取文件,主要是txt文件, 下面主要来介绍这两个函数的用法
第一个是loadtxt, 其一般用法为
numpy.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)
上面给出了loadtxt所有的关键字参数, 这里我们可以来一一解释并给出示例
这里我们使用的是jupyter notebook, 可以实现交互式的界面操作
1
2
3
4
5
|
%%writefile test.txt # 这是用来写入文件的代码 1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 |
首先给出最简单的loadtxt的代码
1
2
3
|
import numpy as np a = np.loadtxt( 'test.txt' ) #最普通的loadtxt print (a) |
实际上就是直接写文件名, 其他关键字参数都是默认的。输出为
[[1. 2. 3. 4.]
[2. 3. 4. 5.]
[3. 4. 5. 6.]
[4. 5. 6. 7.]]
a为浮点数的原因为Python默认的数字的数据类型为双精度浮点数
1
2
3
4
5
6
7
8
|
% % writefile test.txt A B C 1 2 3 4 5 6 7 8 9 a = np.loadtxt( 'test1.txt' , skiprows = 1 , dtype = int ) print (a) |
这里的skiprows是指跳过前1行, 如果设置skiprows=2, 就会跳过前两行, 这里的输出为
[[1 2 3]
[4 5 6]
[7 8 9]]
1
2
3
4
5
6
7
8
9
|
% % writefile test.txt A B C 1 2 3 # AAA 4 5 6 7 8 9 a = np.loadtxt( 'test2.txt' , dtype = int , skiprows = 1 , comments = '#' ) print (a) |
这里的comment的是指, 如果行的开头为#就会跳过该行, 这里输出为
[[1 2 3]
[4 5 6]
[7 8 9]]
1
2
3
4
5
6
7
8
9
|
% % writefile test.txt A B C 1 , 2 , 3 # AA AAA 4 , 5 , 6 7 , 8 , 9 (a, b) = np.loadtxt( 'test.txt' , dtype = int , skiprows = 1 , comments = '#' , delimiter = ',' , usecols = ( 0 , 2 ), unpack = True ) print (a, b) |
这里的usecols是指只使用0,2两列, unpack是指会把每一列当成一个向量输出, 而不是合并在一起。
[1 4 7] [3 6 9]
最后介绍converters参数, 这个是对数据进行预处理的参数, 我们可以先定义一个函数, 这里的converters是一个字典, 表示第零列使用函数add_one来进行预处理
1
2
3
4
|
def add_one(x): return int (x) + 1 #注意到这里使用的字符的数据结构 (a, b) = np.loadtxt( 'test.txt' , dtype = int , skiprows = 1 , converters = { 0 :add_one}, comments = '#' , delimiter = ',' , usecols = ( 0 , 2 ), unpack = True ) print (a, b) |
输出结果为:
[2 5 8] [3 6 9]
补一个GitHub的jupyter-notebook链接...
https://github.com/ChangChunHe/PythonLearning/blob/master/Numpy/8.loadtxt_and_genfromtxt.ipynb
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/hecc/p/8480532.html