每次要显示图像阵列的时候,使用自带的 matplotlib 或者cv2 都要设置一大堆东西,subplot,fig等等,突然想起 可以利用numpy 的htstack() 和 vstack() 将图片对接起来组成一张新的图片。因此写了写了下面的函数。做了部分注释,一些比较绕的地方可以自行体会。
大致流程包括:
1、输入图像列表 img_list
2、show_type : 最终的显示方式,输入为行数列数 (例如 show_type=22 ,则最终显示图片为两行两列)
3、basic_shape, 图片resize的尺寸。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
def image_show( img_list, show_type, basic_size = [ 300 , 500 ]): ''' img_list contains the images that need to be stitched, the show_typ contains the final shape of the stitched one, ie, 12 for 1 row 2 cols. basic_size : all input image need to be reshaped first. ''' # reshap row and col number. n_row, n_col = basic_size #print n_row,n_col # num of pixels need to be filled vertically and horizontally. h_filling = 10 v_filling = 10 # image resize. resize_list = [] for i in img_list: temp_img = cv2.resize( i, ( n_col, n_row ), interpolation = cv2. inter_cubic ) resize_list.append( temp_img ) # resolve the final stitched image 's shape. n_row_img, n_col_img = show_type / 10 , show_type % 10 #print n_row_img, n_col_img # the blank_img and the image need to be filled should be defined firstly. blank_img = np.ones([n_row,n_col]) * 255 blank_img = np.array( blank_img, np.uint8 ) v_img = np.array( np.ones([n_row,v_filling]) * 255 , np.uint8) h_img = np.array( np.ones ([ h_filling, n_col_img * n_col + (n_col_img - 1 ) * h_filling]) * 255 , np.uint8) # images in the image list should be dispatched into different sub-list # in each sub list the images will be connected horizontally. recombination_list = [] temp_list = [] n_list = len (resize_list) for index, i in enumerate ( xrange (n_list)): if index! = 0 and index % n_col_img = = 0 : recombination_list.append(temp_list) temp_list = [] if len (resize_list)> n_col_img: pass else : recombination_list.append(resize_list) break temp_list.append( resize_list.pop( 0 )) if n_list = = n_col_img: recombination_list.append(temp_list) #print len(temp_list) #print temp_list # stack the images horizontally. h_temp = [] for i in recombination_list: #print len(i) if len (i) = = n_col_img: temp_new_i = [ [j,v_img] if index + 1 ! = len (i) else j for index, j in enumerate (i) ] new_i = [ j for i in temp_new_i[: - 1 ] for j in i ] new_i.append( temp_new_i[ - 1 ]) h_temp.append(np.hstack(new_i)) else : add_n = n_col_img - len (i) for k in range (add_n): i.append(blank_img) temp_new_i = [ [j,v_img] if index + 1 ! = len (i) else j for index, j in enumerate (i) ] new_i = [ j for i in temp_new_i[: - 1 ] for j in i ] new_i.append( temp_new_i[ - 1 ]) h_temp.append(np.hstack(new_i)) #print len(h_temp) #print h_temp temp_full_img = [ [j, h_img ] if index + 1 ! = len (h_temp) else j for index, j in enumerate (h_temp) ] if len (temp_full_img) > 2 : full_img = [ j for i in temp_full_img[: - 1 ] for j in i ] full_img.append(temp_full_img[ - 1 ]) else : full_img = [ j for i in temp_full_img for j in i ] #full_img.append(temp_full_img[-1]) if len (full_img)> 1 : return np.vstack( full_img) else : return full_img |
最终输入情况和结果如下图:
第一组结果图:自行看输入
第二组结果图。
以上这篇python numpy 显示图像阵列的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/vola9527/article/details/52801380