如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
""" Append values to the end of an array. Parameters - - - - - - - - - - arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int , optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns - - - - - - - append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in - place: a new array is allocated and filled. If `axis` is None , `out` is a flattened array. |
numpy.append(arr, values, axis=None):
简答来说,就是arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值
当axis无定义时,是横向加成,返回总是为一维数组!
1
2
3
4
|
Examples - - - - - - - - >>> np.append([ 1 , 2 , 3 ], [[ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]) array([ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]) |
当axis有定义的时候,分别为0和1的时候。(注意加载的时候,数组要设置好,行数或者列数要相同。不然会有error:all the input array dimensions except for the concatenation axis must match exactly)
当axis为0时,数组是加在下面(列数要相同):
1
2
3
4
5
|
import numpy as np aa = np.zeros(( 1 , 8 )) bb = np.ones(( 3 , 8 )) c = np.append(aa,bb,axis = 0 ) print (c) |
1
2
3
4
|
[[ 0. 0. 0. 0. 0. 0. 0. 0. ] [ 1. 1. 1. 1. 1. 1. 1. 1. ] [ 1. 1. 1. 1. 1. 1. 1. 1. ] [ 1. 1. 1. 1. 1. 1. 1. 1. ]] |
当axis为1时,数组是加在右边(行数要相同):
1
2
3
4
5
|
import numpy as np aa = np.zeros(( 3 , 8 )) bb = np.ones(( 3 , 1 )) c = np.append(aa,bb,axis = 1 ) print (c) |
1
2
3
|
[[ 0. 0. 0. 0. 0. 0. 0. 0. 1. ] [ 0. 0. 0. 0. 0. 0. 0. 0. 1. ] [ 0. 0. 0. 0. 0. 0. 0. 0. 1. ]] |
以上这篇对numpy.append()里的axis的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35019361/article/details/79055991