用python写了一个简单版本的textrank,实现提取关键词的功能。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
import numpy as np import jieba import jieba.posseg as pseg class TextRank( object ): def __init__( self , sentence, window, alpha, iternum): self .sentence = sentence self .window = window self .alpha = alpha self .edge_dict = {} #记录节点的边连接字典 self .iternum = iternum #迭代次数 #对句子进行分词 def cutSentence( self ): jieba.load_userdict( 'user_dict.txt' ) tag_filter = [ 'a' , 'd' , 'n' , 'v' ] seg_result = pseg.cut( self .sentence) self .word_list = [s.word for s in seg_result if s.flag in tag_filter] print ( self .word_list) #根据窗口,构建每个节点的相邻节点,返回边的集合 def createNodes( self ): tmp_list = [] word_list_len = len ( self .word_list) for index, word in enumerate ( self .word_list): if word not in self .edge_dict.keys(): tmp_list.append(word) tmp_set = set () left = index - self .window + 1 #窗口左边界 right = index + self .window #窗口右边界 if left < 0 : left = 0 if right > = word_list_len: right = word_list_len for i in range (left, right): if i = = index: continue tmp_set.add( self .word_list[i]) self .edge_dict[word] = tmp_set #根据边的相连关系,构建矩阵 def createMatrix( self ): self .matrix = np.zeros([ len ( set ( self .word_list)), len ( set ( self .word_list))]) self .word_index = {} #记录词的index self .index_dict = {} #记录节点index对应的词 for i, v in enumerate ( set ( self .word_list)): self .word_index[v] = i self .index_dict[i] = v for key in self .edge_dict.keys(): for w in self .edge_dict[key]: self .matrix[ self .word_index[key]][ self .word_index[w]] = 1 self .matrix[ self .word_index[w]][ self .word_index[key]] = 1 #归一化 for j in range ( self .matrix.shape[ 1 ]): sum = 0 for i in range ( self .matrix.shape[ 0 ]): sum + = self .matrix[i][j] for i in range ( self .matrix.shape[ 0 ]): self .matrix[i][j] / = sum #根据textrank公式计算权重 def calPR( self ): self .PR = np.ones([ len ( set ( self .word_list)), 1 ]) for i in range ( self .iternum): self .PR = ( 1 - self .alpha) + self .alpha * np.dot( self .matrix, self .PR) #输出词和相应的权重 def printResult( self ): word_pr = {} for i in range ( len ( self .PR)): word_pr[ self .index_dict[i]] = self .PR[i][ 0 ] res = sorted (word_pr.items(), key = lambda x : x[ 1 ], reverse = True ) print (res) if __name__ = = '__main__' : s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。' tr = TextRank(s, 3 , 0.85 , 700 ) tr.cutSentence() tr.createNodes() tr.createMatrix() tr.calPR() tr.printResult() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/y12345678904/article/details/77855936