脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python实现textrank关键词提取

python实现textrank关键词提取

2021-03-08 00:21sparksnail Python

这篇文章主要为大家详细介绍了python实现textrank关键词提取,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

python写了一个简单版本的textrank,实现提取关键词的功能。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import jieba
import jieba.posseg as pseg
 
class TextRank(object):
   
  def __init__(self, sentence, window, alpha, iternum):
    self.sentence = sentence
    self.window = window
    self.alpha = alpha
    self.edge_dict = {} #记录节点的边连接字典
    self.iternum = iternum#迭代次数
 
  #对句子进行分词
  def cutSentence(self):
    jieba.load_userdict('user_dict.txt')
    tag_filter = ['a','d','n','v']
    seg_result = pseg.cut(self.sentence)
    self.word_list = [s.word for s in seg_result if s.flag in tag_filter]
    print(self.word_list)
 
  #根据窗口,构建每个节点的相邻节点,返回边的集合
  def createNodes(self):
    tmp_list = []
    word_list_len = len(self.word_list)
    for index, word in enumerate(self.word_list):
      if word not in self.edge_dict.keys():
        tmp_list.append(word)
        tmp_set = set()
        left = index - self.window + 1#窗口左边界
        right = index + self.window#窗口右边界
        if left < 0: left = 0
        if right >= word_list_len: right = word_list_len
        for i in range(left, right):
          if i == index:
            continue
          tmp_set.add(self.word_list[i])
        self.edge_dict[word] = tmp_set
 
  #根据边的相连关系,构建矩阵
  def createMatrix(self):
    self.matrix = np.zeros([len(set(self.word_list)), len(set(self.word_list))])
    self.word_index = {}#记录词的index
    self.index_dict = {}#记录节点index对应的词
 
    for i, v in enumerate(set(self.word_list)):
      self.word_index[v] = i
      self.index_dict[i] = v
    for key in self.edge_dict.keys():
      for w in self.edge_dict[key]:
        self.matrix[self.word_index[key]][self.word_index[w]] = 1
        self.matrix[self.word_index[w]][self.word_index[key]] = 1
    #归一化
    for j in range(self.matrix.shape[1]):
      sum = 0
      for i in range(self.matrix.shape[0]):
        sum += self.matrix[i][j]
      for i in range(self.matrix.shape[0]):
        self.matrix[i][j] /= sum
 
  #根据textrank公式计算权重
  def calPR(self):
    self.PR = np.ones([len(set(self.word_list)), 1])
    for i in range(self.iternum):
      self.PR = (1 - self.alpha) + self.alpha * np.dot(self.matrix, self.PR)
 
  #输出词和相应的权重
  def printResult(self):
    word_pr = {}
    for i in range(len(self.PR)):
      word_pr[self.index_dict[i]] = self.PR[i][0]
    res = sorted(word_pr.items(), key = lambda x : x[1], reverse=True)
    print(res)
 
if __name__ == '__main__':
  s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。'
  tr = TextRank(s, 3, 0.85, 700)
  tr.cutSentence()
  tr.createNodes()
  tr.createMatrix()
  tr.calPR()
  tr.printResult()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/y12345678904/article/details/77855936

延伸 · 阅读

精彩推荐