脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python实现超简单的视频对象提取功能

python实现超简单的视频对象提取功能

2021-02-28 00:30王磊的博客 Python

这篇文章主要给大家介绍了关于利用python实现超简单的视频对象提取功能的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

视频对象提取

与其说是视频对象提取,不如说是视频颜色提取,因为其本质还是使用了OpenCV的HSV颜色物体检测。下面话不多说了,来一起看看详细的介绍吧。

HSV介绍

HSV分别代表,色调(H:hue),饱和度(S:saturation),亮度(V:value),由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model);

色调(H:hue):用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;(OpenCV中H的取值范围为0~180,8bit存储时);

饱和度(S:saturation):取值范围为0~255,值越大,颜色越饱和;

亮度(V:value):取值范围为0(黑色)~255(白色);

效果展示

python实现超简单的视频对象提取功能

实现思路

如上效果图所示,我们要做的就是把视频中的绿色的小猪佩奇识别出来即可,下面是的识别步骤:

  • 使用PS取的小猪佩奇颜色的HSB值,相当于OpenCV的HSV,不过PS的HSV(HSB)取值是:0~360、0~1、0~1,而OpenCV的HSV是:0~180、0~255、0~255,所以要对ps的hsv进行处理,H/2、SV*255;
  • 使用OpenCV位“与运算”提取HSV的颜色部分画面;
  • 使用高斯模糊优化图片;
  • 图片展示;

PS中工具栏右侧HSB显示:

python实现超简单的视频对象提取功能

完整代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#coding=utf-8
#HSV转换(颜色提取)
 
import cv2
import numpy as np
 
cap = cv2.VideoCapture(0)
 
while (1):
 _, frame = cap.read()
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 
 #在PS里用取色器的HSV
 psHSV = [112, 89, 52]
 diff = 40 #上下浮动值
 #因为PS的HSV(HSB)取值是:0~360、0~1、0~1,而OpenCV的HSV是:0~180、0~255、0~255,所以要对ps的hsv进行处理,H/2、SV*255
 lowerHSV = [(psHSV[0] - diff) / 2, (psHSV[1] - diff) * 255 / 100,
    (psHSV[2] - diff) * 255 / 100]
 upperHSV = [(psHSV[0] + diff) / 2, (psHSV[1] + diff) * 255 / 100,
    (psHSV[2] + diff) * 255 / 100]
 
 mask = cv2.inRange(hsv, np.array(lowerHSV), np.array(upperHSV))
 
 #使用位“与运算”提取颜色部分
 res = cv2.bitwise_and(frame, frame, mask=mask)
 #使用高斯模式优化图片
 res = cv2.GaussianBlur(res, (5, 5), 1)
 
 cv2.imshow('frame', frame)
 # cv2.imshow('mask', mask)
 cv2.imshow('res', res)
 if cv2.waitKey(1) & 0xFF == ord('q'):
  break
 
cv2.destroyAllWindows()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对服务器之家的支持。

原文链接:https://www.cnblogs.com/vipstone/p/9127383.html

延伸 · 阅读

精彩推荐