一、PyTorch批训练
1. 概述
PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import torch import torch.utils.data as Data torch.manual_seed( 1 ) # 设定随机数种子 BATCH_SIZE = 5 x = torch.linspace( 1 , 10 , 10 ) y = torch.linspace( 0.5 , 5 , 10 ) # 将数据转换为torch的dataset格式 torch_dataset = Data.TensorDataset(data_tensor = x, target_tensor = y) # 将torch_dataset置入Dataloader中 loader = Data.DataLoader( dataset = torch_dataset, batch_size = BATCH_SIZE, # 批大小 # 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少 shuffle = True , # 是否随机打乱顺序 num_workers = 2 , # 多线程读取数据的线程数 ) for epoch in range ( 3 ): for step, (batch_x, batch_y) in enumerate (loader): print ( 'Epoch:' , epoch, '|Step:' , step, '|batch_x:' , batch_x.numpy(), '|batch_y' , batch_y.numpy()) ''''' shuffle=True Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3. 3.5 1. 1.5 0.5] Epoch: 0 |Step: 1 |batch_x: [ 9. 10. 4. 8. 5.] |batch_y [ 4.5 5. 2. 4. 2.5] Epoch: 1 |Step: 0 |batch_x: [ 3. 4. 2. 9. 10.] |batch_y [ 1.5 2. 1. 4.5 5. ] Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4. 2.5 3. ] Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1. 3. 3.5] Epoch: 2 |Step: 1 |batch_x: [ 10. 4. 8. 1. 5.] |batch_y [ 5. 2. 4. 0.5 2.5] shuffle=False Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5] Epoch: 0 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ] Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5] Epoch: 1 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ] Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5] Epoch: 2 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ] ''' |
2. TensorDataset
1
|
classtorch.utils.data.TensorDataset(data_tensor, target_tensor) |
TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor。
3. DataLoader
dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。
二、PyTorch的Optimizer优化器
本实验中,首先构造一组数据集,转换格式并置于DataLoader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。
代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed( 1 ) # 设定随机数种子 # 定义超参数 LR = 0.01 # 学习率 BATCH_SIZE = 32 # 批大小 EPOCH = 12 # 迭代次数 x = torch.unsqueeze(torch.linspace( - 1 , 1 , 1000 ), dim = 1 ) y = x. pow ( 2 ) + 0.1 * torch.normal(torch.zeros( * x.size())) #plt.scatter(x.numpy(), y.numpy()) #plt.show() # 将数据转换为torch的dataset格式 torch_dataset = Data.TensorDataset(data_tensor = x, target_tensor = y) # 将torch_dataset置入Dataloader中 loader = Data.DataLoader(dataset = torch_dataset, batch_size = BATCH_SIZE, shuffle = True , num_workers = 2 ) class Net(torch.nn.Module): def __init__( self ): super (Net, self ).__init__() self .hidden = torch.nn.Linear( 1 , 20 ) self .predict = torch.nn.Linear( 20 , 1 ) def forward( self , x): x = F.relu( self .hidden(x)) x = self .predict(x) return x # 为每个优化器创建一个Net net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] # 初始化优化器 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr = LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr = LR, momentum = 0.8 ) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr = LR, alpha = 0.9 ) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr = LR, betas = ( 0.9 , 0.99 )) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] # 定义损失函数 loss_function = torch.nn.MSELoss() losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值 for epoch in range (EPOCH): print ( 'Epoch:' , epoch + 1 , 'Training...' ) for step, (batch_x, batch_y) in enumerate (loader): b_x = Variable(batch_x) b_y = Variable(batch_y) for net, opt, l_his in zip (nets, optimizers, losses_history): output = net(b_x) loss = loss_function(output, b_y) opt.zero_grad() loss.backward() opt.step() l_his.append(loss.data[ 0 ]) labels = [ 'SGD' , 'Momentum' , 'RMSprop' , 'Adam' ] for i, l_his in enumerate (losses_history): plt.plot(l_his, label = labels[i]) plt.legend(loc = 'best' ) plt.xlabel( 'Steps' ) plt.ylabel( 'Loss' ) plt.ylim(( 0 , 0.2 )) plt.show() |
实验结果:
由实验结果可见,SGD的优化效果是最差的,速度很慢;作为SGD的改良版本,Momentum表现就好许多;相比RMSprop和Adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。
三、其他补充
1. Python的zip函数
zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
x = [ 1 , 2 , 3 ] y = [ 4 , 5 , 6 ] z = [ 7 , 8 , 9 ] xyz = zip (x, y, z) print xyz [( 1 , 4 , 7 ), ( 2 , 5 , 8 ), ( 3 , 6 , 9 )] x = [ 1 , 2 , 3 ] x = zip (x) print x [( 1 ,), ( 2 ,), ( 3 ,)] x = [ 1 , 2 , 3 ] y = [ 4 , 5 , 6 , 7 ] xy = zip (x, y) print xy [( 1 , 4 ), ( 2 , 5 ), ( 3 , 6 )] |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/marsjhao/article/details/72055310