服务器之家:专注于服务器技术及软件下载分享
分类导航

云服务器|WEB服务器|FTP服务器|邮件服务器|虚拟主机|服务器安全|DNS服务器|服务器知识|Nginx|IIS|Tomcat|

服务器之家 - 服务器技术 - 服务器知识 - Hadoop编程基于MR程序实现倒排索引示例

Hadoop编程基于MR程序实现倒排索引示例

2021-02-03 16:55liuyazhuang 服务器知识

最近正在学习Hadoop的知识,一步步来,这里先给大家分享一篇关于Hadoop编程基于MR程序实现倒排索引的文章,还是不错的,供需要的朋友参考。

相信接触过搜索引擎开发的同学对倒排索引并不陌生,谷歌、百度等搜索引擎都是用的倒排索引,关于倒排索引的有关知识,这里就不再深入讲解,有兴趣的同学到网上了解一下。这篇博文就带着大家一起学习下如何利用Hadoop的MR程序来实现倒排索引的功能。

一、数据准备

1、输入文件数据

这里我们准备三个输入文件,分别如下所示

a.txt

?
1
2
3
hello tom
hello jerry
hello tom

b.txt

?
1
2
3
hello jerry
hello jerry
tom jerry

c.txt

?
1
2
hello jerry
hello tom

2、最终输出文件数据

最终输出文件的结果为:

?
1
2
3
4
[plain] view plain copy
hello  c.txt-->2 b.txt-->2 a.txt-->3 
jerry  c.txt-->1 b.txt-->3 a.txt-->1 
tom c.txt-->1 b.txt-->1 a.txt-->2

二、倒排索引过程分析

根据输入文件数据和最终的输出文件结果可知,此程序需要利用两个MR实现,具体流程可总结归纳如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
-------------第一步Mapper的输出结果格式如下:--------------------
context.wirte("hello->a.txt", "1")
context.wirte("hello->a.txt", "1")
context.wirte("hello->a.txt", "1")
context.wirte("hello->b.txt", "1")
context.wirte("hello->b.txt", "1")
context.wirte("hello->c.txt", "1")
context.wirte("hello->c.txt", "1")
-------------第一步Reducer的得到的输入数据格式如下:-------------
<"hello->a.txt", {1,1,1}>
<"hello->b.txt", {1,1}>
<"hello->c.txt", {1,1}>
-------------第一步Reducer的输出数据格式如下---------------------
context.write("hello->a.txt", "3")
context.write("hello->b.txt", "2")
context.write("hello->c.txt", "2")
-------------第二步Mapper得到的输入数据格式如下:-----------------
context.write("hello->a.txt", "3")
context.write("hello->b.txt", "2")
context.write("hello->c.txt", "2")
-------------第二步Mapper输出的数据格式如下:--------------------
context.write("hello", "a.txt->3")
context.write("hello", "b.txt->2")
context.write("hello", "c.txt->2")
-------------第二步Reducer得到的输入数据格式如下:-----------------
<"hello", {"a.txt->3", "b.txt->2", "c.txt->2"}>
-------------第二步Reducer输出的数据格式如下:-----------------
context.write("hello", "a.txt->3 b.txt->2 c.txt->2")
最终结果为:
hello  a.txt->3 b.txt->2 c.txt->2

三、程序开发

3.1、第一步MR程序与输入输出

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
package com.lyz.hdfs.mr.ii;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 倒排索引第一步Map Reduce程序,此处程序将所有的Map/Reduce/Runner程序放在一个类中
 * @author liuyazhuang
 *
 */
public class InverseIndexStepOne {
  /**
   * 完成倒排索引第一步的mapper程序
   * @author liuyazhuang
   *
   */
  public static class StepOneMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)
        throws IOException, InterruptedException {
      //获取一行数据
      String line = value.toString();
      //切分出每个单词
      String[] fields = StringUtils.split(line, " ");
      //获取数据的切片信息
      FileSplit fileSplit = (FileSplit) context.getInputSplit();
      //根据切片信息获取文件名称
      String fileName = fileSplit.getPath().getName();
      for(String field : fields){
        context.write(new Text(field + "-->" + fileName), new LongWritable(1));
      }
    }
  }
  /**
   * 完成倒排索引第一步的Reducer程序
   * 最终输出结果为:
   * hello-->a.txt  3
    hello-->b.txt  2
    hello-->c.txt  2
    jerry-->a.txt  1
    jerry-->b.txt  3
    jerry-->c.txt  1
    tom-->a.txt 2
    tom-->b.txt 1
    tom-->c.txt 1
   * @author liuyazhuang
   *
   */
  public static class StepOneReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values,
        Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
      long counter = 0;
      for(LongWritable value : values){
        counter += value.get();
      }
      context.write(key, new LongWritable(counter));
    }
  }
  //运行第一步的MR程序
  public static void main(String[] args) throws Exception{
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf);
    job.setJarByClass(InverseIndexStepOne.class);
    job.setMapperClass(StepOneMapper.class);
    job.setReducerClass(StepOneReducer.class);
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(LongWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);
    FileInputFormat.addInputPath(job, new Path("D:/hadoop_data/ii"));
    FileOutputFormat.setOutputPath(job, new Path("D:/hadoop_data/ii/result"));
    job.waitForCompletion(true);
  }
}

3.1.1 输入数据

a.txt

?
1
2
3
hello tom
hello jerry
hello tom

b.txt

?
1
2
3
hello jerry
hello jerry
tom jerry

c.txt

?
1
2
hello jerry
hello tom

3.1.2

输出结果:

?
1
2
3
4
5
6
7
8
9
hello-->a.txt  3
hello-->b.txt  2
hello-->c.txt  2
jerry-->a.txt  1
jerry-->b.txt  3
jerry-->c.txt  1
tom-->a.txt 2
tom-->b.txt 1
tom-->c.txt 1

3.2 第二步MR程序与输入输出

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package com.lyz.hdfs.mr.ii;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 倒排索引第二步Map Reduce程序,此处程序将所有的Map/Reduce/Runner程序放在一个类中
 * @author liuyazhuang
 *
 */
public class InverseIndexStepTwo {
  /**
   * 完成倒排索引第二步的mapper程序
   *
   * 从第一步MR程序中得到的输入信息为:
   * hello-->a.txt  3
    hello-->b.txt  2
    hello-->c.txt  2
    jerry-->a.txt  1
    jerry-->b.txt  3
    jerry-->c.txt  1
    tom-->a.txt 2
    tom-->b.txt 1
    tom-->c.txt 1
   * @author liuyazhuang
   *
   */
  public static class StepTwoMapper extends Mapper<LongWritable, Text, Text, Text>{
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
        throws IOException, InterruptedException {
      String line = value.toString();
      String[] fields = StringUtils.split(line, "\t");
      String[] wordAndFileName = StringUtils.split(fields[0], "-->");
      String word = wordAndFileName[0];
      String fileName = wordAndFileName[1];
      long counter = Long.parseLong(fields[1]);
      context.write(new Text(word), new Text(fileName + "-->" + counter));
    }
  }
  /**
   * 完成倒排索引第二步的Reducer程序
   * 得到的输入信息格式为:
   * <"hello", {"a.txt->3", "b.txt->2", "c.txt->2"}>,
   * 最终输出结果如下:
   * hello  c.txt-->2 b.txt-->2 a.txt-->3
    jerry  c.txt-->1 b.txt-->3 a.txt-->1
    tom c.txt-->1 b.txt-->1 a.txt-->2
   * @author liuyazhuang
   *
   */
  public static class StepTwoReducer extends Reducer<Text, Text, Text, Text>{
    @Override
    protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
        throws IOException, InterruptedException {
      String result = "";
      for(Text value : values){
        result += value + " ";
      }
      context.write(key, new Text(result));
    }
  }
  //运行第一步的MR程序
  public static void main(String[] args) throws Exception{
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf);
    job.setJarByClass(InverseIndexStepTwo.class);
    job.setMapperClass(StepTwoMapper.class);
    job.setReducerClass(StepTwoReducer.class);
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(Text.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);
    FileInputFormat.addInputPath(job, new Path("D:/hadoop_data/ii/result/part-r-00000"));
    FileOutputFormat.setOutputPath(job, new Path("D:/hadoop_data/ii/result/final"));
    job.waitForCompletion(true);
  }
}

3.2.1 输入数据

?
1
2
3
4
5
6
7
8
9
hello-->a.txt  3
hello-->b.txt  2
hello-->c.txt  2
jerry-->a.txt  1
jerry-->b.txt  3
jerry-->c.txt  1
tom-->a.txt 2
tom-->b.txt 1
tom-->c.txt 1

3.2.2 输出结果

?
1
2
3
hello  c.txt-->2 b.txt-->2 a.txt-->3 
jerry  c.txt-->1 b.txt-->3 a.txt-->1 
tom c.txt-->1 b.txt-->1 a.txt-->2

总结

以上就是本文关于Hadoop编程基于MR程序实现倒排索引示例的全部内容,希望对大家有所帮助。有什么问题可以直接留言,小编会及时回复大家的。感谢朋友们对本站的支持!

原文链接:http://blog.csdn.net/l1028386804/article/details/78239792

延伸 · 阅读

精彩推荐