脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - tensorflow实现KNN识别MNIST

tensorflow实现KNN识别MNIST

2021-01-21 00:13freedom098 Python

这篇文章主要为大家详细介绍了tensorflow实现KNN识别MNIST,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。

KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
__author__ = 'freedom'
import tensorflow as tf
import numpy as np
 
def loadMNIST():
 from tensorflow.examples.tutorials.mnist import input_data
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
 return mnist
def KNN(mnist):
 train_x,train_y = mnist.train.next_batch(5000)
 test_x,test_y = mnist.train.next_batch(200)
 
 xtr = tf.placeholder(tf.float32,[None,784])
 xte = tf.placeholder(tf.float32,[784])
 distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1))
 
 pred = tf.argmin(distance,0)
 
 init = tf.initialize_all_variables()
 
 sess = tf.Session()
 sess.run(init)
 
 right = 0
 for i in range(200):
  ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]})
  print 'prediction is ',np.argmax(train_y[ansIndex])
  print 'true value is ',np.argmax(test_y[i])
  if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]):
   right += 1.0
 accracy = right/200.0
 print accracy
 
if __name__ == "__main__":
 mnist = loadMNIST()
 KNN(mnist)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/freedom098/article/details/52117330

延伸 · 阅读

精彩推荐