本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x。BP神经网络的具体原理此处不再介绍。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
import numpy as np class NeuralNetwork( object ): def __init__( self , input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers.设定输入层、隐藏层和输出层的node数目 self .input_nodes = input_nodes self .hidden_nodes = hidden_nodes self .output_nodes = output_nodes # Initialize weights,初始化权重和学习速率 self .weights_input_to_hidden = np.random.normal( 0.0 , self .hidden_nodes * * - 0.5 , ( self .hidden_nodes, self .input_nodes)) self .weights_hidden_to_output = np.random.normal( 0.0 , self .output_nodes * * - 0.5 , ( self .output_nodes, self .hidden_nodes)) self .lr = learning_rate # 隐藏层的激励函数为sigmoid函数,Activation function is the sigmoid function self .activation_function = ( lambda x: 1 / ( 1 + np.exp( - x))) def train( self , inputs_list, targets_list): # Convert inputs list to 2d array inputs = np.array(inputs_list, ndmin = 2 ).T # 输入向量的shape为 [feature_diemension, 1] targets = np.array(targets_list, ndmin = 2 ).T # 向前传播,Forward pass # TODO: Hidden layer hidden_inputs = np.dot( self .weights_input_to_hidden, inputs) # signals into hidden layer hidden_outputs = self .activation_function(hidden_inputs) # signals from hidden layer # 输出层,输出层的激励函数就是 y = x final_inputs = np.dot( self .weights_hidden_to_output, hidden_outputs) # signals into final output layer final_outputs = final_inputs # signals from final output layer ### 反向传播 Backward pass,使用梯度下降对权重进行更新 ### # 输出误差 # Output layer error is the difference between desired target and actual output. output_errors = (targets_list - final_outputs) # 反向传播误差 Backpropagated error # errors propagated to the hidden layer hidden_errors = np.dot(output_errors, self .weights_hidden_to_output) * (hidden_outputs * ( 1 - hidden_outputs)).T # 更新权重 Update the weights # 更新隐藏层与输出层之间的权重 update hidden-to-output weights with gradient descent step self .weights_hidden_to_output + = output_errors * hidden_outputs.T * self .lr # 更新输入层与隐藏层之间的权重 update input-to-hidden weights with gradient descent step self .weights_input_to_hidden + = (inputs * hidden_errors * self .lr).T # 进行预测 def run( self , inputs_list): # Run a forward pass through the network inputs = np.array(inputs_list, ndmin = 2 ).T #### 实现向前传播 Implement the forward pass here #### # 隐藏层 Hidden layer hidden_inputs = np.dot( self .weights_input_to_hidden, inputs) # signals into hidden layer hidden_outputs = self .activation_function(hidden_inputs) # signals from hidden layer # 输出层 Output layer final_inputs = np.dot( self .weights_hidden_to_output, hidden_outputs) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/zhangyang10d/article/details/54804053