本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下:
前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。
代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。
发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
#!/usr/bin/python # -*- coding:UTF-8 -*- #导入需要的包 import pandas as pd import numpy as np import matplotlib.pyplot as plt import operator from sklearn import datasets,linear_model from sklearn.linear_model import LogisticRegression #读取文件 df = pd.read_table( 'newdata.txt' ,header = None ,sep = ',' ) #读取日期 tdate = sorted (df.loc[:, 0 ]) #将以列项为数据,将球号码取出,写入到csv文件中,并取50行数据 # Function to red number to csv file def RedToCsv(h_num,num,csv_name): h_num = df.loc[:,num:num].values h_num = h_num[ 50 :: - 1 ] renum2 = pd.DataFrame(h_num) renum2.to_csv(csv_name,header = None ) fp = file (csv_name) s = fp.read() fp.close() a = s.split( '\n' ) a.insert( 0 , 'numid,number' ) s = '\n' .join(a) fp = file (csv_name, 'w' ) fp.write(s) fp.close() #调用取号码函数 # create file RedToCsv( 'red1' , 1 , 'rednum1data.csv' ) RedToCsv( 'red2' , 2 , 'rednum2data.csv' ) RedToCsv( 'red3' , 3 , 'rednum3data.csv' ) RedToCsv( 'red4' , 4 , 'rednum4data.csv' ) RedToCsv( 'red5' , 5 , 'rednum5data.csv' ) RedToCsv( 'red6' , 6 , 'rednum6data.csv' ) RedToCsv( 'blue1' , 7 , 'bluenumdata.csv' ) #获取数据,X_parameter为numid数据,Y_parameter为number数据 # Function to get data def get_data(file_name): data = pd.read_csv(file_name) X_parameter = [] Y_parameter = [] for single_square_feet ,single_price_value in zip (data[ 'numid' ],data[ 'number' ]): X_parameter.append([ float (single_square_feet)]) Y_parameter.append( float (single_price_value)) return X_parameter,Y_parameter #训练线性模型 # Function for Fitting our data to Linear model def linear_model_main(X_parameters,Y_parameters,predict_value): # Create linear regression object regr = linear_model.LinearRegression() #regr = LogisticRegression() regr.fit(X_parameters, Y_parameters) predict_outcome = regr.predict(predict_value) predictions = {} predictions[ 'intercept' ] = regr.intercept_ predictions[ 'coefficient' ] = regr.coef_ predictions[ 'predicted_value' ] = predict_outcome return predictions #获取预测结果函数 def get_predicted_num(inputfile,num): X,Y = get_data(inputfile) predictvalue = 51 result = linear_model_main(X,Y,predictvalue) print "num " + str (num) + " Intercept value " , result[ 'intercept' ] print "num " + str (num) + " coefficient" , result[ 'coefficient' ] print "num " + str (num) + " Predicted value: " ,result[ 'predicted_value' ] #调用函数分别预测红球、蓝球 get_predicted_num( 'rednum1data.csv' , 1 ) get_predicted_num( 'rednum2data.csv' , 2 ) get_predicted_num( 'rednum3data.csv' , 3 ) get_predicted_num( 'rednum4data.csv' , 4 ) get_predicted_num( 'rednum5data.csv' , 5 ) get_predicted_num( 'rednum6data.csv' , 6 ) get_predicted_num( 'bluenumdata.csv' , 1 ) # 获取X,Y数据预测结果 # X,Y = get_data('rednum1data.csv') # predictvalue = 21 # result = linear_model_main(X,Y,predictvalue) # print "red num 1 Intercept value " , result['intercept'] # print "red num 1 coefficient" , result['coefficient'] # print "red num 1 Predicted value: ",result['predicted_value'] # Function to show the resutls of linear fit model def show_linear_line(X_parameters,Y_parameters): # Create linear regression object regr = linear_model.LinearRegression() #regr = LogisticRegression() regr.fit(X_parameters, Y_parameters) plt.figure(figsize = ( 12 , 6 ),dpi = 80 ) plt.legend(loc = 'best' ) plt.scatter(X_parameters,Y_parameters,color = 'blue' ) plt.plot(X_parameters,regr.predict(X_parameters),color = 'red' ,linewidth = 4 ) plt.xticks(()) plt.yticks(()) plt.show() #显示模型图像,如果需要画图,将“获取X,Y数据预测结果”这块注释去掉,“调用函数分别预测红球、蓝球”这块代码注释下 # show_linear_line(X,Y) |
画图结果:
预测2016-05-15开奖结果:
实际开奖结果:05 06 10 16 22 26 11
以下为预测值:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
#取5个数,计算的结果 num 1 Intercept value 5.66666666667 num 1 coefficient [ - 0.6 ] num 1 Predicted value: [ 2.06666667 ] num 2 Intercept value 7.33333333333 num 2 coefficient [ 0.2 ] num 2 Predicted value: [ 8.53333333 ] num 3 Intercept value 14.619047619 num 3 coefficient [ - 0.51428571 ] num 3 Predicted value: [ 11.53333333 ] num 4 Intercept value 17.7619047619 num 4 coefficient [ - 0.37142857 ] num 4 Predicted value: [ 15.53333333 ] num 5 Intercept value 21.7142857143 num 5 coefficient [ 1.11428571 ] num 5 Predicted value: [ 28.4 ] num 6 Intercept value 28.5238095238 num 6 coefficient [ 0.65714286 ] num 6 Predicted value: [ 32.46666667 ] num 1 Intercept value 9.57142857143 num 1 coefficient [ - 0.82857143 ] num 1 Predicted value: [ 4.6 ] |
四舍五入结果:
2 9 12 16 28 33 5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#取12个数,计算的结果四舍五入: 3 7 12 15 24 30 7 #取15个数,计算的结果四舍五入: 4 7 13 15 25 31 7 #取18个数,计算的结果四舍五入: 4 8 13 16 23 31 8 #取20个数,计算的结果四舍五入: 4 7 12 22 24 27 10 #取25个数,计算的结果四舍五入: 7 8 13 17 24 30 6 #取50个数,计算的结果四舍五入: 4 10 14 18 23 29 8 #取100个数,计算的结果四舍五入: 5 11 15 19 24 29 8 #取500个数,计算的结果四舍五入: 5 10 15 20 24 29 9 #取1000个数,计算的结果四舍五入: 5 10 14 19 24 29 9 #取1939个数,计算的结果四舍五入: 5 10 14 19 24 29 9 |
看来预测中奖真是有些难度,随机性太高,双色球预测案例,只是为了让入门数据分析的朋友有些思路,要想中大奖还是有难度的,多做好事善事多积德行善吧。
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://blog.csdn.net/levy_cui/article/details/51497709