脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python+matplotlib实现礼盒柱状图实例代码

python+matplotlib实现礼盒柱状图实例代码

2021-01-05 00:12mengwei Python

这篇文章主要介绍了python+matplotlib实现礼盒柱状图实例代码,具有一定借鉴价值,需要的朋友可以参考下

演示结果:

python+matplotlib实现礼盒柱状图实例代码

完整代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
 
from matplotlib._png import read_png
import matplotlib.colors
from matplotlib.cbook import get_sample_data
 
 
class RibbonBox(object):
 
  original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",
                       asfileobj=False))
  cut_location = 70
  b_and_h = original_image[:, :, 2]
  color = original_image[:, :, 2] - original_image[:, :, 0]
  alpha = original_image[:, :, 3]
  nx = original_image.shape[1]
 
  def __init__(self, color):
    rgb = matplotlib.colors.to_rgba(color)[:3]
 
    im = np.empty(self.original_image.shape,
           self.original_image.dtype)
 
    im[:, :, :3] = self.b_and_h[:, :, np.newaxis]
    im[:, :, :3] -= self.color[:, :, np.newaxis]*(1. - np.array(rgb))
    im[:, :, 3] = self.alpha
 
    self.im = im
 
  def get_stretched_image(self, stretch_factor):
    stretch_factor = max(stretch_factor, 1)
    ny, nx, nch = self.im.shape
    ny2 = int(ny*stretch_factor)
 
    stretched_image = np.empty((ny2, nx, nch),
                  self.im.dtype)
    cut = self.im[self.cut_location, :, :]
    stretched_image[:, :, :] = cut
    stretched_image[:self.cut_location, :, :] = \
      self.im[:self.cut_location, :, :]
    stretched_image[-(ny - self.cut_location):, :, :] = \
      self.im[-(ny - self.cut_location):, :, :]
 
    self._cached_im = stretched_image
    return stretched_image
 
 
class RibbonBoxImage(BboxImage):
  zorder = 1
 
  def __init__(self, bbox, color,
         cmap=None,
         norm=None,
         interpolation=None,
         origin=None,
         filternorm=1,
         filterrad=4.0,
         resample=False,
         **kwargs
         ):
 
    BboxImage.__init__(self, bbox,
              cmap=cmap,
              norm=norm,
              interpolation=interpolation,
              origin=origin,
              filternorm=filternorm,
              filterrad=filterrad,
              resample=resample,
              **kwargs
              )
 
    self._ribbonbox = RibbonBox(color)
    self._cached_ny = None
 
  def draw(self, renderer, *args, **kwargs):
 
    bbox = self.get_window_extent(renderer)
    stretch_factor = bbox.height / bbox.width
 
    ny = int(stretch_factor*self._ribbonbox.nx)
    if self._cached_ny != ny:
      arr = self._ribbonbox.get_stretched_image(stretch_factor)
      self.set_array(arr)
      self._cached_ny = ny
 
    BboxImage.draw(self, renderer, *args, **kwargs)
 
 
if 1:
  from matplotlib.transforms import Bbox, TransformedBbox
  from matplotlib.ticker import ScalarFormatter
 
  # Fixing random state for reproducibility
  np.random.seed(19680801)
 
  fig, ax = plt.subplots()
 
  years = np.arange(2004, 2009)
  box_colors = [(0.8, 0.2, 0.2),
         (0.2, 0.8, 0.2),
         (0.2, 0.2, 0.8),
         (0.7, 0.5, 0.8),
         (0.3, 0.8, 0.7),
         ]
  heights = np.random.random(years.shape) * 7000 + 3000
 
  fmt = ScalarFormatter(useOffset=False)
  ax.xaxis.set_major_formatter(fmt)
 
  for year, h, bc in zip(years, heights, box_colors):
    bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h)
    bbox = TransformedBbox(bbox0, ax.transData)
    rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")
 
    ax.add_artist(rb_patch)
 
    ax.annotate(r"%d" % (int(h/100.)*100),
          (year, h), va="bottom", ha="center")
 
  patch_gradient = BboxImage(ax.bbox,
                interpolation="bicubic",
                zorder=0.1,
                )
  gradient = np.zeros((2, 2, 4), dtype=float)
  gradient[:, :, :3] = [1, 1, 0.]
  gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel
  patch_gradient.set_array(gradient)
  ax.add_artist(patch_gradient)
 
  ax.set_xlim(years[0] - 0.5, years[-1] + 0.5)
  ax.set_ylim(0, 10000)
 
  fig.savefig('ribbon_box.png')
  plt.show()

总结

以上就是本文关于python+matplotlib实现礼盒柱状图实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

原文链接:https://matplotlib.org/index.html

延伸 · 阅读

精彩推荐