使用matplotlib.tri.CubicTriInterpolator.演示变化率计算:
完整实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
from matplotlib.tri import ( Triangulation, UniformTriRefiner, CubicTriInterpolator) import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #----------------------------------------------------------------------------- # Electrical potential of a dipole #----------------------------------------------------------------------------- def dipole_potential(x, y): """ The electric dipole potential V """ r_sq = x * * 2 + y * * 2 theta = np.arctan2(y, x) z = np.cos(theta) / r_sq return (np. max (z) - z) / (np. max (z) - np. min (z)) #----------------------------------------------------------------------------- # Creating a Triangulation #----------------------------------------------------------------------------- # First create the x and y coordinates of the points. n_angles = 30 n_radii = 10 min_radius = 0.2 radii = np.linspace(min_radius, 0.95 , n_radii) angles = np.linspace( 0 , 2 * np.pi, n_angles, endpoint = False ) angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 ) angles[:, 1 :: 2 ] + = np.pi / n_angles x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() V = dipole_potential(x, y) # Create the Triangulation; no triangles specified so Delaunay triangulation # created. triang = Triangulation(x, y) # Mask off unwanted triangles. triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1 ), y[triang.triangles].mean(axis = 1 )) < min_radius) #----------------------------------------------------------------------------- # Refine data - interpolates the electrical potential V #----------------------------------------------------------------------------- refiner = UniformTriRefiner(triang) tri_refi, z_test_refi = refiner.refine_field(V, subdiv = 3 ) #----------------------------------------------------------------------------- # Computes the electrical field (Ex, Ey) as gradient of electrical potential #----------------------------------------------------------------------------- tci = CubicTriInterpolator(triang, - V) # Gradient requested here at the mesh nodes but could be anywhere else: (Ex, Ey) = tci.gradient(triang.x, triang.y) E_norm = np.sqrt(Ex * * 2 + Ey * * 2 ) #----------------------------------------------------------------------------- # Plot the triangulation, the potential iso-contours and the vector field #----------------------------------------------------------------------------- fig, ax = plt.subplots() ax.set_aspect( 'equal' ) # Enforce the margins, and enlarge them to give room for the vectors. ax.use_sticky_edges = False ax.margins( 0.07 ) ax.triplot(triang, color = '0.8' ) levels = np.arange( 0. , 1. , 0.01 ) cmap = cm.get_cmap(name = 'hot' , lut = None ) ax.tricontour(tri_refi, z_test_refi, levels = levels, cmap = cmap, linewidths = [ 2.0 , 1.0 , 1.0 , 1.0 ]) # Plots direction of the electrical vector field ax.quiver(triang.x, triang.y, Ex / E_norm, Ey / E_norm, units = 'xy' , scale = 10. , zorder = 3 , color = 'blue' , width = 0.007 , headwidth = 3. , headlength = 4. ) ax.set_title( 'Gradient plot: an electrical dipole' ) plt.show() |
总结
以上就是本文关于python+matplotlib演示电偶极子实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:https://matplotlib.org/index.html