本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下
python代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
#用tensorflow实现弹性网络算法(多变量) #使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征。 #1 导入必要的编程库,创建计算图,加载数据集 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets from tensorflow.python.framework import ops ops.get_default_graph() sess = tf.Session() iris = datasets.load_iris() x_vals = np.array([[x[ 1 ], x[ 2 ], x[ 3 ]] for x in iris.data]) y_vals = np.array([y[ 0 ] for y in iris.data]) #2 声明学习率,批量大小,占位符和模型变量,模型输出 learning_rate = 0.001 batch_size = 50 x_data = tf.placeholder(shape = [ None , 3 ], dtype = tf.float32) #占位符大小为3 y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32) A = tf.Variable(tf.random_normal(shape = [ 3 , 1 ])) b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ])) model_output = tf.add(tf.matmul(x_data, A), b) #3 对于弹性网络回归算法,损失函数包括L1正则和L2正则 elastic_param1 = tf.constant( 1. ) elastic_param2 = tf.constant( 1. ) l1_a_loss = tf.reduce_mean( abs (A)) l2_a_loss = tf.reduce_mean(tf.square(A)) e1_term = tf.multiply(elastic_param1, l1_a_loss) e2_term = tf.multiply(elastic_param2, l2_a_loss) loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0 ) #4 初始化变量, 声明优化器, 然后遍历迭代运行, 训练拟合得到参数 init = tf.global_variables_initializer() sess.run(init) my_opt = tf.train.GradientDescentOptimizer(learning_rate) train_step = my_opt.minimize(loss) loss_vec = [] for i in range ( 1000 ): rand_index = np.random.choice( len (x_vals), size = batch_size) rand_x = x_vals[rand_index] rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict = {x_data:rand_x, y_target:rand_y}) temp_loss = sess.run(loss, feed_dict = {x_data:rand_x, y_target:rand_y}) loss_vec.append(temp_loss) if (i + 1 ) % 250 = = 0 : print ( 'Step#' + str (i + 1 ) + 'A = ' + str (sess.run(A)) + 'b=' + str (sess.run(b))) print ( 'Loss= ' + str (temp_loss)) #现在能观察到, 随着训练迭代后损失函数已收敛。 plt.plot(loss_vec, 'k--' ) plt.title( 'Loss per Generation' ) plt.xlabel( 'Generation' ) plt.ylabel( 'Loss' ) plt.show() |
本文参考书《Tensorflow机器学习实战指南》
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/xckkcxxck/article/details/78992345