脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python代码实现ID3决策树算法

python代码实现ID3决策树算法

2020-12-27 00:33史帅 Python

这篇文章主要为大家详细介绍了python代码实现ID3决策树算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python实现ID3决策树算法的具体代码,供大家参考,具体内容如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
'''''
Created on Jan 30, 2015
 
@author: 史帅
'''
 
from math import log
import operator
import re
 
def fileToDataSet(fileName):
  '''''
  此方法功能是:从文件中读取样本集数据,样本数据的格式为:数据以空白字符分割,最后一列为类标签
     
    参数:
      fileName:存放样本集数据的文件路径
     
    返回值:
      dataSet:样本集数据组成的二维数组
  '''
  file=open(fileName, mode='r')
  lines=file.readlines()
  dataSet=[]
  index=0
  p=re.compile(r"\s+")
  for line in lines:
    line=p.split(line.strip())
    dataSet.append(line)
    index+=1
  return dataSet
 
def calculateShannonEntropy(dataSet):
  '''''
  此方法功能是:计算样本集数据类别的信息熵,样本数据的格式为二维数组
     
    参数:
      dataSet:样本集数据组成的二维数组
     
    返回值:
      shannonEntropy:样本集数据类别的信息熵
  '''
  dataCount=len(dataSet)
  classCountDic={}
  for data in dataSet:
    label=data[-1]
    if label not in classCountDic.keys():
      classCountDic[label]=0
    classCountDic[label]+=1
  shannonEntropy=0.0
  for key in classCountDic:
    prob=float(classCountDic[key])/dataCount
    shannonEntropy-=prob*log(prob,2)
  return shannonEntropy
 
def splitDataSet(dataSet,axis,value):
  '''''
  此方法功能是:对样本集数据按照某一特征进行分割,使得分割后的数据集中该特征的值全部等于同一个值,并且将分割后的数据中该特征列去除
   
    参数:
      dataSet:待分割的样本集数据,二维数组
      axis:特征所在样本集数据列中的位置
      value:样本集数据分割后该特征的值
       
    返回值:
      splitedDataSet:按照所在位置为axis的特征进行分割,并且该特征值为value的样本集数据的子集
  '''
  splitedDataSet=[]
  for data in dataSet:
    if data[axis]==value:
      splitedData=data[:axis]
      splitedData.extend(data[axis+1:])
      splitedDataSet.append(splitedData)
  return splitedDataSet
 
def chooseBestFeatureToSlipt(dataSet):
  '''''
  此方法功能是:分别计算整个样本集数据的信息熵与按照各个特征分割后的数据集的信息熵之差,得到使差值最大的分割方案,得到该分割方案的特征
   
    参数:
      dataSet:待分割的样本集数据,二维数组
       
    返回值:
      bestFeature:按照分割前后信息熵差值最大的分割方案得到的特征,返回此特征所在样本集数据列中的位置
  '''
  bestFeature=-1
  dataSetShannonEntropy=calculateShannonEntropy(dataSet)
  infoGain=0
  featureCount=len(dataSet[0])-1
  for i in range(featureCount):
    featureList=[example[i] for example in dataSet]
    featureSet=set(featureList)
    splitedDataSetShannonEntropy=0
    for feature in featureSet:
      splitedDataSet=splitDataSet(dataSet,i,feature)
      splitedDataSetShannonEntropy+=float(len(splitedDataSet))/len(dataSet)*calculateShannonEntropy(splitedDataSet)
    if dataSetShannonEntropy-splitedDataSetShannonEntropy>infoGain:
      infoGain=dataSetShannonEntropy-splitedDataSetShannonEntropy
      bestFeature=i
  return bestFeature
 
def majorityClass(classList):
  '''''
  此方法功能是:从类别列表中得到个数最多的类别
   
    参数:
      classList:类别列表,一维数组
       
    返回值:
      类别列表中个数最多的类别
  '''
  classCountDic={}
  for label in classList:
    if label not in classCountDic.keys():
      classCountDic[label]=0
    classCountDic[label]+=1
  classCountDic=sorted(classCountDic.item(),key=operator.itemgetter(1),reverse=True)
  return classCountDic[0][0]
 
 
def createTree(dataSet,features):
  '''''
  此方法功能是:根据训练样本集数据创建对分类最有效的决策树
   
    参数:
      dataSet:训练样本集数据,二维数组
      features:与训练样本集数据中各列的特征值相对应的特征名称集合,一维数组
     
    返回值:
      tree:根据训练样本集数据所创建的,对分类最有效的决策树
  '''
  subFeatures=features[:]
  classList=[example[-1] for example in dataSet]
  if classList.count(classList[0])==len(classList):
    return classList[0]
  if len(dataSet[0])==1:
    return majorityClass(classList)
  bestFeature=chooseBestFeatureToSlipt(dataSet)
  label=subFeatures[bestFeature]
  tree={label:{}}
  del(subFeatures[bestFeature])
  featureList=[example[bestFeature] for example in dataSet]
  featureSet=set(featureList)
  for feature in featureSet:
    splitedDataSet=splitDataSet(dataSet,bestFeature,feature)
    tree[label][feature]=createTree(splitedDataSet, subFeatures)
  return tree
   
def classify(inX,tree,features):
  '''''
  此方法功能是:根据创建好的决策树,对特定的数据进行分类
   
    参数:
      inX:待分类的数据,特征值向量,一维数组
      tree:根据决策树算法创建好的最有效的决策树
      features:与训练样本集数据中各列的特征值相对应的特征名称集合,一维数组
       
    返回值:
      label:待分类的数据通过决策树分类之后的类别
  '''
  feature=list(tree.keys())[0]
  featureIndex=features.index(feature)
  secondTree=tree[feature][inX[featureIndex]]
  if type(secondTree).__name__=="dict":
    label=classify(inX,secondTree,features)
  else:
    label=secondTree
  return label

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/qq641542616/article/details/43410471

延伸 · 阅读

精彩推荐