服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - java 矩阵乘法的mapreduce程序实现

java 矩阵乘法的mapreduce程序实现

2020-11-11 16:24南寻 Java教程

这篇文章主要介绍了java 矩阵乘法的mapreduce程序实现的相关资料,需要的朋友可以参考下

java 矩阵乘法mapreduce程序实现

map函数:对于矩阵M中的每个元素m(ij),产生一系列的key-value对<(i,k),(M,j,m(ij))>

其中k=1,2.....知道矩阵N的总列数;对于矩阵N中的每个元素n(jk),产生一系列的key-value对<(i , k) , (N , j ,n(jk)>, 其中i=1,2.......直到i=1,2.......直到矩阵M的总列数。

map

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
package com.cb.matrix;
 
import static org.mockito.Matchers.intThat;
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapreduce.Mapper;
 
import com.sun.org.apache.bcel.internal.generic.NEW;
 
 
public class MatrixMapper extends Mapper<Object, Text, Text, Text> {
 private Text map_key=new Text();
 private Text map_value= new Text();
 private int columnN;
 private int rowM;
 /**
 * 执行map()函数前先由conf.get()得到main函数中提供的必要变量
 * 也就是从输入文件名中得到的矩阵维度信息
 */
 
 @Override
 protected void setup(Mapper<Object, Text, Text, Text>.Context context) throws IOException, InterruptedException {
 // TODO Auto-generated method stub
 Configuration config=context.getConfiguration();
 columnN=Integer.parseInt(config.get("columnN"));
 rowM =Integer.parseInt(config.get("rowM"));
 }
 
 @Override
 protected void map(Object key, Text value, Mapper<Object, Text, Text, Text>.Context context)
  throws IOException, InterruptedException {
 // TODO Auto-generated method stub
 //得到文件名,从而区分输入矩阵M和N
 FileSplit fileSplit=(FileSplit)context.getInputSplit();
 String fileName=fileSplit.getPath().getName();
 
 if (fileName.contains("M")) {
  String[] tuple =value.toString().split(",");
  int i =Integer.parseInt(tuple[0]);
  String[] tuples=tuple[1].split("\t");
  int j=Integer.parseInt(tuples[0]);
  int Mij=Integer.parseInt(tuples[1]);
  for(int k=1;k<columnN+1;k++){
  map_key.set(i+","+k);
  map_value.set("M"+","+j+","+Mij);
  context.write(map_key, map_value);
  }
  
 }
 else if(fileName.contains("N")){
  String[] tuple=value.toString().split(",");
  int j=Integer.parseInt(tuple[0]);
  String[] tuples =tuple[1].split("\t");
  int k=Integer.parseInt(tuples[0]);
  int Njk=Integer.parseInt(tuples[1]);
  for(int i=1;i<rowM+1;i++){
  map_key.set(i+","+k);
  map_value.set("N"+","+j+","+Njk);
  context.write(map_key, map_value);
  }
 }
 
 }
 
}

reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。

reducer

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
package com.cb.matrix;
 
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
 
 
 
public class MatrixReducer extends Reducer<Text, Text, Text, Text> {
 private int sum=0;
 private int columnM;
 @Override
 protected void setup(Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException {
 // TODO Auto-generated method stub
 Configuration conf =context.getConfiguration();
 columnM=Integer.parseInt(conf.get("columnM"));
 }
 @Override
 protected void reduce(Text arg0, Iterable<Text> arg1, Reducer<Text, Text, Text, Text>.Context arg2)
  throws IOException, InterruptedException {
 // TODO Auto-generated method stub
 int[] M=new int[columnM+1];
 int[] N=new int[columnM+1];
 
 for(Text val:arg1){
  String[] tuple=val.toString().split(",");
  if(tuple[0].equals("M")){
  M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);
  
  }else{
  N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);
  }
  for(int j=1;j<columnM+1;j++){
  sum+=M[j]*N[j];
  }
  arg2.write(arg0, new Text(Integer.toString(sum)));
  sum=0;
 }
 }
 
}

 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

原文链接:https://my.oschina.net/u/3264690/blog/909239

延伸 · 阅读

精彩推荐