脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python 判断一组数据是否符合正态分布

python 判断一组数据是否符合正态分布

2020-09-24 00:23小小喽啰 Python

这篇文章主要介绍了python 如何判断一组数据是否符合正态分布,帮助大家更好的利用python分析数据,感兴趣的朋友可以了解下

正态分布:

若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)

其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布

判断方法有画图/k-s检验

画图:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#导入模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
 
#构造一组随机数据
s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])
 
#画散点图和直方图
fig = plt.figure(figsize = (10,6))
ax1 = fig.add_subplot(2,1,1) # 创建子图1
ax1.scatter(s.index, s.values)
plt.grid()
 
ax2 = fig.add_subplot(2,1,2) # 创建子图2
s.hist(bins=30,alpha = 0.5,ax = ax2)
s.plot(kind = 'kde', secondary_y=True,ax = ax2)
plt.grid()

结果如下:

python 判断一组数据是否符合正态分布

使用ks检验:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#导入scipy模块
from scipy import stats
 
"""
kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差
结果返回两个值:statistic → D值,pvalue → P值
p值大于0.05,为正态分布
H0:样本符合
H1:样本不符合
如何p>0.05接受H0 ,反之
"""
u = s['value'].mean() # 计算均值
std = s['value'].std() # 计算标准差
stats.kstest(s['value'], 'norm', (u, std))

结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布

以上就是python 判断一组数据是否符合正态分布的详细内容,更多关于python 正态分布的资料请关注服务器之家其它相关文章!

原文链接:https://www.cnblogs.com/cgmcoding/p/13253934.html

延伸 · 阅读

精彩推荐